
psutil Documentation
Release 5.6.7

Giampaolo Rodola

Dec 05, 2019

Contents

1 Quick links 1

2 About 3

3 Professional support 5

4 Install 7

5 System related functions 9
5.1 CPU . 9
5.2 Memory . 12
5.3 Disks . 13
5.4 Network . 15
5.5 Sensors . 19
5.6 Other system info . 20

6 Processes 23
6.1 Functions . 23
6.2 Exceptions . 25
6.3 Process class . 25
6.4 Popen class . 40

7 Windows services 41

8 Constants 43
8.1 Operating system constants . 43
8.2 Process status constants . 44
8.3 Process priority constants . 44
8.4 Process resources constants . 45
8.5 Connections constants . 46
8.6 Hardware constants . 46

9 Unicode 49

10 Recipes 51
10.1 Find process by name . 51
10.2 Kill process tree . 52
10.3 Terminate my children . 52

i

10.4 Filtering and sorting processes . 53
10.5 Bytes conversion . 54

11 Supported platforms 57

12 FAQs 59

13 Running tests 61

14 Development guide 63

15 Timeline 65

Python Module Index 69

Index 71

ii

CHAPTER 1

Quick links

• Home page

• Install

• Blog

• Forum

• Download

• Development guide

• What’s new

1

https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil/blob/master/INSTALL.rst
http://grodola.blogspot.com/search/label/psutil
http://groups.google.com/group/psutil/topics
https://pypi.org/project/psutil/#files
https://github.com/giampaolo/psutil/blob/master/docs/DEVGUIDE.rst
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst

psutil Documentation, Release 5.6.7

2 Chapter 1. Quick links

CHAPTER 2

About

psutil (python system and process utilities) is a cross-platform library for retrieving information on running processes
and system utilization (CPU, memory, disks, network, sensors) in Python. It is useful mainly for system monitoring,
profiling, limiting process resources and the management of running processes. It implements many functionalities
offered by UNIX command line tools such as: ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat,
iotop, uptime, pidof, tty, taskset, pmap. psutil currently supports the following platforms:

• Linux

• Windows

• macOS

• FreeBSD, OpenBSD, NetBSD

• Sun Solaris

• AIX

Supported Python versions are 2.6, 2.7 and 3.4+. PyPy is also known to work.

The psutil documentation you’re reading is distributed as a single HTML page.

3

http://pypy.org/

psutil Documentation, Release 5.6.7

4 Chapter 2. About

CHAPTER 3

Professional support

Professional support for psutil is available as part of the Tidelift Subscription. Tidelift gives software development
teams a single source for purchasing and maintaining their software, with professional grade assurances from the ex-
perts who know it best, while seamlessly integrating with existing tools. By subscribing you will help me (Giampaolo
Rodola) support psutil future development. Alternatively consider making a small donation. To report a security
vulnerability, please use the Tidelift security contact. Tidelift will coordinate the fix and disclosure.

5

https://tidelift.com/subscription/pkg/pypi-psutil?utm_source=pypi-psutil&utm_medium=referral&utm_campaign=readme
http://grodola.blogspot.com/p/about.html
http://grodola.blogspot.com/p/about.html
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=A9ZS7PKKRM3S8
https://tidelift.com/security

psutil Documentation, Release 5.6.7

6 Chapter 3. Professional support

CHAPTER 4

Install

Linux Ubuntu / Debian:

sudo apt-get install gcc python3-dev
sudo pip3 install psutil

Linux Redhat:

sudo yum install gcc python3-devel
sudo pip3 install psutil

Windows:

pip3 install psutil

For other platforms see more detailed install instructions.

7

https://github.com/giampaolo/psutil/blob/master/INSTALL.rst

psutil Documentation, Release 5.6.7

8 Chapter 4. Install

CHAPTER 5

System related functions

5.1 CPU

psutil.cpu_times(percpu=False)
Return system CPU times as a named tuple. Every attribute represents the seconds the CPU has spent in the
given mode. The attributes availability varies depending on the platform:

• user: time spent by normal processes executing in user mode; on Linux this also includes guest time

• system: time spent by processes executing in kernel mode

• idle: time spent doing nothing

Platform-specific fields:

• nice (UNIX): time spent by niced (prioritized) processes executing in user mode; on Linux this also in-
cludes guest_nice time

• iowait (Linux): time spent waiting for I/O to complete. This is not accounted in idle time counter.

• irq (Linux, BSD): time spent for servicing hardware interrupts

• softirq (Linux): time spent for servicing software interrupts

• steal (Linux 2.6.11+): time spent by other operating systems running in a virtualized environment

• guest (Linux 2.6.24+): time spent running a virtual CPU for guest operating systems under the control of
the Linux kernel

• guest_nice (Linux 3.2.0+): time spent running a niced guest (virtual CPU for guest operating systems
under the control of the Linux kernel)

• interrupt (Windows): time spent for servicing hardware interrupts (similar to “irq” on UNIX)

• dpc (Windows): time spent servicing deferred procedure calls (DPCs); DPCs are interrupts that run at a
lower priority than standard interrupts.

9

psutil Documentation, Release 5.6.7

When percpu is True return a list of named tuples for each logical CPU on the system. First element of the
list refers to first CPU, second element to second CPU and so on. The order of the list is consistent across calls.
Example output on Linux:

>>> import psutil
>>> psutil.cpu_times()
scputimes(user=17411.7, nice=77.99, system=3797.02, idle=51266.57, iowait=732.58,
→˓irq=0.01, softirq=142.43, steal=0.0, guest=0.0, guest_nice=0.0)

Changed in version 4.1.0: added interrupt and dpc fields on Windows.

psutil.cpu_percent(interval=None, percpu=False)
Return a float representing the current system-wide CPU utilization as a percentage. When interval is > 0.0
compares system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None
compares system CPU times elapsed since last call or module import, returning immediately. That means the
first time this is called it will return a meaningless 0.0 value which you are supposed to ignore. In this case it
is recommended for accuracy that this function be called with at least 0.1 seconds between calls. When percpu
is True returns a list of floats representing the utilization as a percentage for each CPU. First element of the list
refers to first CPU, second element to second CPU and so on. The order of the list is consistent across calls.

>>> import psutil
>>> # blocking
>>> psutil.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> psutil.cpu_percent(interval=None)
2.9
>>> # blocking, per-cpu
>>> psutil.cpu_percent(interval=1, percpu=True)
[2.0, 1.0]
>>>

Warning: the first time this function is called with interval = 0.0 or None it will return a meaningless
0.0 value which you are supposed to ignore.

psutil.cpu_times_percent(interval=None, percpu=False)
Same as cpu_percent() but provides utilization percentages for each specific CPU time as is returned
by psutil.cpu_times(percpu=True). interval and percpu arguments have the same meaning as
in cpu_percent(). On Linux “guest” and “guest_nice” percentages are not accounted in “user” and
“user_nice” percentages.

Warning: the first time this function is called with interval = 0.0 or None it will return a meaningless
0.0 value which you are supposed to ignore.

Changed in version 4.1.0: two new interrupt and dpc fields are returned on Windows.

psutil.cpu_count(logical=True)
Return the number of logical CPUs in the system (same as os.cpu_count in Python 3.4) or None if undetermined.
If logical is False return the number of physical cores only (hyper thread CPUs are excluded) or None if
undetermined. On OpenBSD and NetBSD psutil.cpu_count(logical=False) always return None.
Example on a system having 2 physical hyper-thread CPU cores:

10 Chapter 5. System related functions

https://docs.python.org/3/library/os.html#os.cpu_count

psutil Documentation, Release 5.6.7

>>> import psutil
>>> psutil.cpu_count()
4
>>> psutil.cpu_count(logical=False)
2

Note that this number is not equivalent to the number of CPUs the current process can actually use. That can
vary in case process CPU affinity has been changed, Linux cgroups are being used or on Windows systems using
processor groups or having more than 64 CPUs. The number of usable CPUs can be obtained with:

>>> len(psutil.Process().cpu_affinity())
1

psutil.cpu_stats()
Return various CPU statistics as a named tuple:

• ctx_switches: number of context switches (voluntary + involuntary) since boot.

• interrupts: number of interrupts since boot.

• soft_interrupts: number of software interrupts since boot. Always set to 0 on Windows and SunOS.

• syscalls: number of system calls since boot. Always set to 0 on Linux.

Example (Linux):

>>> import psutil
>>> psutil.cpu_stats()
scpustats(ctx_switches=20455687, interrupts=6598984, soft_interrupts=2134212,
→˓syscalls=0)

New in version 4.1.0.

psutil.cpu_freq(percpu=False)
Return CPU frequency as a nameduple including current, min and max frequencies expressed in Mhz. On Linux
current frequency reports the real-time value, on all other platforms it represents the nominal “fixed” value. If
percpu is True and the system supports per-cpu frequency retrieval (Linux only) a list of frequencies is returned
for each CPU, if not, a list with a single element is returned. If min and max cannot be determined they are set
to 0.

Example (Linux):

>>> import psutil
>>> psutil.cpu_freq()
scpufreq(current=931.42925, min=800.0, max=3500.0)
>>> psutil.cpu_freq(percpu=True)
[scpufreq(current=2394.945, min=800.0, max=3500.0),
scpufreq(current=2236.812, min=800.0, max=3500.0),
scpufreq(current=1703.609, min=800.0, max=3500.0),
scpufreq(current=1754.289, min=800.0, max=3500.0)]

Availability: Linux, macOS, Windows, FreeBSD

New in version 5.1.0.

Changed in version 5.5.1: added FreeBSD support.

psutil.getloadavg()
Return the average system load over the last 1, 5 and 15 minutes as a tuple. The load represents the processes
which are in a runnable state, either using the CPU or waiting to use the CPU (e.g. waiting for disk I/O). On
UNIX systems this relies on os.getloadavg. On Windows this is emulated by using a Windows API that spawns

5.1. CPU 11

https://docs.python.org/3/library/os.html#os.getloadavg

psutil Documentation, Release 5.6.7

a thread which keeps running in background and updates the load average every 5 seconds, mimicking the UNIX
behavior. Thus, the first time this is called and for the next 5 seconds it will return a meaningless (0.0, 0.0,
0.0) tuple. The numbers returned only make sense if related to the number of CPU cores installed on the
system. So, for instance, 3.14 on a system with 10 CPU cores means that the system load was 31.4% percent
over the last N minutes.

>>> import psutil
>>> psutil.getloadavg()
(3.14, 3.89, 4.67)
>>> psutil.cpu_count()
10
>>> # percentage representation
>>> [x / psutil.cpu_count() * 100 for x in psutil.getloadavg()]
[31.4, 38.9, 46.7]

Availability: Unix, Windows

New in version 5.6.2.

5.2 Memory

psutil.virtual_memory()
Return statistics about system memory usage as a named tuple including the following fields, expressed in bytes.
Main metrics:

• total: total physical memory (exclusive swap).

• available: the memory that can be given instantly to processes without the system going into swap. This is
calculated by summing different memory values depending on the platform and it is supposed to be used
to monitor actual memory usage in a cross platform fashion.

Other metrics:

• used: memory used, calculated differently depending on the platform and designed for informational
purposes only. total - free does not necessarily match used.

• free: memory not being used at all (zeroed) that is readily available; note that this doesn’t reflect the actual
memory available (use available instead). total - used does not necessarily match free.

• active (UNIX): memory currently in use or very recently used, and so it is in RAM.

• inactive (UNIX): memory that is marked as not used.

• buffers (Linux, BSD): cache for things like file system metadata.

• cached (Linux, BSD): cache for various things.

• shared (Linux, BSD): memory that may be simultaneously accessed by multiple processes.

• slab (Linux): in-kernel data structures cache.

• wired (BSD, macOS): memory that is marked to always stay in RAM. It is never moved to disk.

The sum of used and available does not necessarily equal total. On Windows available and free are the same.
See meminfo.py script providing an example on how to convert bytes in a human readable form.

Note: if you just want to know how much physical memory is left in a cross platform fashion simply rely on
the available field.

12 Chapter 5. System related functions

https://github.com/giampaolo/psutil/blob/master/scripts/meminfo.py

psutil Documentation, Release 5.6.7

>>> import psutil
>>> mem = psutil.virtual_memory()
>>> mem
svmem(total=10367352832, available=6472179712, percent=37.6, used=8186245120,
→˓free=2181107712, active=4748992512, inactive=2758115328, buffers=790724608,
→˓cached=3500347392, shared=787554304, slab=199348224)
>>>
>>> THRESHOLD = 100 * 1024 * 1024 # 100MB
>>> if mem.available <= THRESHOLD:
... print("warning")
...
>>>

Changed in version 4.2.0: added shared metric on Linux.

Changed in version 5.4.4: added slab metric on Linux.

psutil.swap_memory()
Return system swap memory statistics as a named tuple including the following fields:

• total: total swap memory in bytes

• used: used swap memory in bytes

• free: free swap memory in bytes

• percent: the percentage usage calculated as (total - available) / total * 100

• sin: the number of bytes the system has swapped in from disk (cumulative)

• sout: the number of bytes the system has swapped out from disk (cumulative)

sin and sout on Windows are always set to 0. See meminfo.py script providing an example on how to convert
bytes in a human readable form.

>>> import psutil
>>> psutil.swap_memory()
sswap(total=2097147904L, used=886620160L, free=1210527744L, percent=42.3,
→˓sin=1050411008, sout=1906720768)

Changed in version 5.2.3: on Linux this function relies on /proc fs instead of sysinfo() syscall so that it can be
used in conjunction with psutil.PROCFS_PATH in order to retrieve memory info about Linux containers
such as Docker and Heroku.

5.3 Disks

psutil.disk_partitions(all=False)
Return all mounted disk partitions as a list of named tuples including device, mount point and filesystem type,
similarly to “df” command on UNIX. If all parameter is False it tries to distinguish and return physical
devices only (e.g. hard disks, cd-rom drives, USB keys) and ignore all others (e.g. memory partitions such
as /dev/shm). Note that this may not be fully reliable on all systems (e.g. on BSD this parameter is ignored).
Named tuple’s fstype field is a string which varies depending on the platform. On Linux it can be one of the
values found in /proc/filesystems (e.g. 'ext3' for an ext3 hard drive o 'iso9660' for the CD-ROM drive).
On Windows it is determined via GetDriveType and can be either "removable", "fixed", "remote",
"cdrom", "unmounted" or "ramdisk". On macOS and BSD it is retrieved via getfsstat syscall. See
disk_usage.py script providing an example usage.

5.3. Disks 13

https://github.com/giampaolo/psutil/blob/master/scripts/meminfo.py
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getdrivetypea
http://www.manpagez.com/man/2/getfsstat/
https://github.com/giampaolo/psutil/blob/master/scripts/disk_usage.py

psutil Documentation, Release 5.6.7

>>> import psutil
>>> psutil.disk_partitions()
[sdiskpart(device='/dev/sda3', mountpoint='/', fstype='ext4', opts='rw,
→˓errors=remount-ro'),
sdiskpart(device='/dev/sda7', mountpoint='/home', fstype='ext4', opts='rw')]

psutil.disk_usage(path)
Return disk usage statistics about the partition which contains the given path as a named tuple including total,
used and free space expressed in bytes, plus the percentage usage. OSError is raised if path does not exist.
Starting from Python 3.3 this is also available as shutil.disk_usage (see BPO-12442). See disk_usage.py script
providing an example usage.

>>> import psutil
>>> psutil.disk_usage('/')
sdiskusage(total=21378641920, used=4809781248, free=15482871808, percent=22.5)

Note: UNIX usually reserves 5% of the total disk space for the root user. total and used fields on UNIX refer to
the overall total and used space, whereas free represents the space available for the user and percent represents
the user utilization (see source code). That is why percent value may look 5% bigger than what you would
expect it to be. Also note that both 4 values match “df” cmdline utility.

Changed in version 4.3.0: percent value takes root reserved space into account.

psutil.disk_io_counters(perdisk=False, nowrap=True)
Return system-wide disk I/O statistics as a named tuple including the following fields:

• read_count: number of reads

• write_count: number of writes

• read_bytes: number of bytes read

• write_bytes: number of bytes written

Platform-specific fields:

• read_time: (all except NetBSD and OpenBSD) time spent reading from disk (in milliseconds)

• write_time: (all except NetBSD and OpenBSD) time spent writing to disk (in milliseconds)

• busy_time: (Linux, FreeBSD) time spent doing actual I/Os (in milliseconds)

• read_merged_count (Linux): number of merged reads (see iostats doc)

• write_merged_count (Linux): number of merged writes (see iostats doc)

If perdisk is True return the same information for every physical disk installed on the system as a dictionary
with partition names as the keys and the named tuple described above as the values. See iotop.py for an example
application. On some systems such as Linux, on a very busy or long-lived system, the numbers returned by the
kernel may overflow and wrap (restart from zero). If nowrap is True psutil will detect and adjust those numbers
across function calls and add “old value” to “new value” so that the returned numbers will always be increasing
or remain the same, but never decrease. disk_io_counters.cache_clear() can be used to invalidate
the nowrap cache. On Windows it may be ncessary to issue diskperf -y command from cmd.exe first in
order to enable IO counters. On diskless machines this function will return None or {} if perdisk is True.

>>> import psutil
>>> psutil.disk_io_counters()
sdiskio(read_count=8141, write_count=2431, read_bytes=290203, write_bytes=537676,
→˓read_time=5868, write_time=94922)

(continues on next page)

14 Chapter 5. System related functions

https://docs.python.org/3/library/shutil.html#shutil.disk_usage.
https://bugs.python.org/issue12442
https://github.com/giampaolo/psutil/blob/master/scripts/disk_usage.py
https://github.com/giampaolo/psutil/blob/3dea30d583b8c1275057edb1b3b720813b4d0f60/psutil/_psposix.py#L123
https://www.kernel.org/doc/Documentation/iostats.txt
https://www.kernel.org/doc/Documentation/iostats.txt
https://github.com/giampaolo/psutil/blob/master/scripts/iotop.py

psutil Documentation, Release 5.6.7

(continued from previous page)

>>>
>>> psutil.disk_io_counters(perdisk=True)
{'sda1': sdiskio(read_count=920, write_count=1, read_bytes=2933248, write_
→˓bytes=512, read_time=6016, write_time=4),
'sda2': sdiskio(read_count=18707, write_count=8830, read_bytes=6060, write_
→˓bytes=3443, read_time=24585, write_time=1572),
'sdb1': sdiskio(read_count=161, write_count=0, read_bytes=786432, write_bytes=0,
→˓read_time=44, write_time=0)}

Note: on Windows "diskperf -y" command may need to be executed first otherwise this function won’t
find any disk.

Changed in version 5.3.0: numbers no longer wrap (restart from zero) across calls thanks to new nowrap argu-
ment.

Changed in version 4.0.0: added busy_time (Linux, FreeBSD), read_merged_count and write_merged_count
(Linux) fields.

Changed in version 4.0.0: NetBSD no longer has read_time and write_time fields.

5.4 Network

psutil.net_io_counters(pernic=False, nowrap=True)
Return system-wide network I/O statistics as a named tuple including the following attributes:

• bytes_sent: number of bytes sent

• bytes_recv: number of bytes received

• packets_sent: number of packets sent

• packets_recv: number of packets received

• errin: total number of errors while receiving

• errout: total number of errors while sending

• dropin: total number of incoming packets which were dropped

• dropout: total number of outgoing packets which were dropped (always 0 on macOS and BSD)

If pernic is True return the same information for every network interface installed on the system as a dictionary
with network interface names as the keys and the named tuple described above as the values. On some systems
such as Linux, on a very busy or long-lived system, the numbers returned by the kernel may overflow and wrap
(restart from zero). If nowrap is True psutil will detect and adjust those numbers across function calls and add
“old value” to “new value” so that the returned numbers will always be increasing or remain the same, but never
decrease. net_io_counters.cache_clear() can be used to invalidate the nowrap cache. On machines
with no network iterfaces this function will return None or {} if pernic is True.

>>> import psutil
>>> psutil.net_io_counters()
snetio(bytes_sent=14508483, bytes_recv=62749361, packets_sent=84311, packets_
→˓recv=94888, errin=0, errout=0, dropin=0, dropout=0)
>>>
>>> psutil.net_io_counters(pernic=True)

(continues on next page)

5.4. Network 15

psutil Documentation, Release 5.6.7

(continued from previous page)

{'lo': snetio(bytes_sent=547971, bytes_recv=547971, packets_sent=5075, packets_
→˓recv=5075, errin=0, errout=0, dropin=0, dropout=0),
'wlan0': snetio(bytes_sent=13921765, bytes_recv=62162574, packets_sent=79097,
→˓packets_recv=89648, errin=0, errout=0, dropin=0, dropout=0)}

Also see nettop.py and ifconfig.py for an example application.

Changed in version 5.3.0: numbers no longer wrap (restart from zero) across calls thanks to new nowrap argu-
ment.

psutil.net_connections(kind=’inet’)
Return system-wide socket connections as a list of named tuples. Every named tuple provides 7 attributes:

• fd: the socket file descriptor. If the connection refers to the current process this may be passed to
socket.fromfd to obtain a usable socket object. On Windows and SunOS this is always set to -1.

• family: the address family, either AF_INET, AF_INET6 or AF_UNIX.

• type: the address type, either SOCK_STREAM, SOCK_DGRAM or SOCK_SEQPACKET.

• laddr: the local address as a (ip, port) named tuple or a path in case of AF_UNIX sockets. For
UNIX sockets see notes below.

• raddr: the remote address as a (ip, port) named tuple or an absolute path in case of UNIX sockets.
When the remote endpoint is not connected you’ll get an empty tuple (AF_INET*) or "" (AF_UNIX). For
UNIX sockets see notes below.

• status: represents the status of a TCP connection. The return value is one of the psutil.CONN_* constants
(a string). For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.

• pid: the PID of the process which opened the socket, if retrievable, else None. On some platforms (e.g.
Linux) the availability of this field changes depending on process privileges (root is needed).

The kind parameter is a string which filters for connections matching the following criteria:

Kind value Connections using
"inet" IPv4 and IPv6
"inet4" IPv4
"inet6" IPv6
"tcp" TCP
"tcp4" TCP over IPv4
"tcp6" TCP over IPv6
"udp" UDP
"udp4" UDP over IPv4
"udp6" UDP over IPv6
"unix" UNIX socket (both UDP and TCP protocols)
"all" the sum of all the possible families and protocols

On macOS and AIX this function requires root privileges. To get per-process connections use Process.
connections(). Also, see netstat.py example script. Example:

>>> import psutil
>>> psutil.net_connections()
[pconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>
→˓, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.135.91',
→˓port=80), status='ESTABLISHED', pid=1254),
pconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>
→˓, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.100',
→˓port=80), status='CLOSING', pid=2987),

(continues on next page)

16 Chapter 5. System related functions

https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py
https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py
https://docs.python.org/3/library/socket.html#socket.fromfd
https://docs.python.org/3/library/socket.html#socket.AF_INET
https://docs.python.org/3/library/socket.html#socket.AF_INET6
https://docs.python.org/3/library/socket.html#socket.AF_UNIX
https://docs.python.org/3/library/socket.html#socket.SOCK_STREAM
https://docs.python.org/3/library/socket.html#socket.SOCK_DGRAM
https://docs.python.org/3/library/socket.html#socket.SOCK_SEQPACKET
https://github.com/giampaolo/psutil/blob/master/scripts/netstat.py

psutil Documentation, Release 5.6.7

(continued from previous page)

pconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>,
→˓ laddr=addr(ip='10.0.0.1', port=60759), raddr=addr(ip='72.14.234.104', port=80),
→˓ status='ESTABLISHED', pid=None),
pconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>,
→˓ laddr=addr(ip='10.0.0.1', port=51314), raddr=addr(ip='72.14.234.83', port=443),
→˓ status='SYN_SENT', pid=None)
...]

Note: (macOS and AIX) psutil.AccessDenied is always raised unless running as root. This is a limita-
tion of the OS and lsof does the same.

Note: (Solaris) UNIX sockets are not supported.

Note: (Linux, FreeBSD) “raddr” field for UNIX sockets is always set to “”. This is a limitation of the OS.

Note: (OpenBSD) “laddr” and “raddr” fields for UNIX sockets are always set to “”. This is a limitation of the
OS.

New in version 2.1.0.

Changed in version 5.3.0: : socket “fd” is now set for real instead of being -1.

Changed in version 5.3.0: : “laddr” and “raddr” are named tuples.

psutil.net_if_addrs()
Return the addresses associated to each NIC (network interface card) installed on the system as a dictionary
whose keys are the NIC names and value is a list of named tuples for each address assigned to the NIC. Each
named tuple includes 5 fields:

• family: the address family, either AF_INET or AF_INET6 or psutil.AF_LINK, which refers to a
MAC address.

• address: the primary NIC address (always set).

• netmask: the netmask address (may be None).

• broadcast: the broadcast address (may be None).

• ptp: stands for “point to point”; it’s the destination address on a point to point interface (typically a VPN).
broadcast and ptp are mutually exclusive. May be None.

Example:

>>> import psutil
>>> psutil.net_if_addrs()
{'lo': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', netmask=
→˓'255.0.0.0', broadcast='127.0.0.1', ptp=None),

snicaddr(family=<AddressFamily.AF_INET6: 10>, address='::1', netmask=
→˓'ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None),

snicaddr(family=<AddressFamily.AF_LINK: 17>, address='00:00:00:00:00:00',
→˓netmask=None, broadcast='00:00:00:00:00:00', ptp=None)],
'wlan0': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='192.168.1.3',
→˓netmask='255.255.255.0', broadcast='192.168.1.255', ptp=None), (continues on next page)

5.4. Network 17

https://docs.python.org/3/library/socket.html#socket.AF_INET
https://docs.python.org/3/library/socket.html#socket.AF_INET6

psutil Documentation, Release 5.6.7

(continued from previous page)

snicaddr(family=<AddressFamily.AF_INET6: 10>, address=
→˓'fe80::c685:8ff:fe45:641%wlan0', netmask='ffff:ffff:ffff:ffff::',
→˓broadcast=None, ptp=None),

snicaddr(family=<AddressFamily.AF_LINK: 17>, address='c4:85:08:45:06:41
→˓', netmask=None, broadcast='ff:ff:ff:ff:ff:ff', ptp=None)]}
>>>

See also nettop.py and ifconfig.py for an example application.

Note: if you’re interested in others families (e.g. AF_BLUETOOTH) you can use the more powerful netifaces
extension.

Note: you can have more than one address of the same family associated with each interface (that’s why dict
values are lists).

Note: broadcast and ptp are not supported on Windows and are always None.

New in version 3.0.0.

Changed in version 3.2.0: ptp field was added.

Changed in version 4.4.0: added support for netmask field on Windows which is no longer None.

psutil.net_if_stats()
Return information about each NIC (network interface card) installed on the system as a dictionary whose keys
are the NIC names and value is a named tuple with the following fields:

• isup: a bool indicating whether the NIC is up and running.

• duplex: the duplex communication type; it can be either NIC_DUPLEX_FULL, NIC_DUPLEX_HALF or
NIC_DUPLEX_UNKNOWN .

• speed: the NIC speed expressed in mega bits (MB), if it can’t be determined (e.g. ‘localhost’) it will be
set to 0.

• mtu: NIC’s maximum transmission unit expressed in bytes.

Example:

>>> import psutil
>>> psutil.net_if_stats()
{'eth0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_FULL: 2>, speed=100,
→˓mtu=1500),
'lo': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0,
→˓mtu=65536)}

Also see nettop.py and ifconfig.py for an example application.

New in version 3.0.0.

18 Chapter 5. System related functions

https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py
https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py
https://pypi.org/project/netifaces/
https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py
https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py

psutil Documentation, Release 5.6.7

5.5 Sensors

psutil.sensors_temperatures(fahrenheit=False)
Return hardware temperatures. Each entry is a named tuple representing a certain hardware temperature sensor
(it may be a CPU, an hard disk or something else, depending on the OS and its configuration). All temperatures
are expressed in celsius unless fahrenheit is set to True. If sensors are not supported by the OS an empty dict
is returned. Example:

>>> import psutil
>>> psutil.sensors_temperatures()
{'acpitz': [shwtemp(label='', current=47.0, high=103.0, critical=103.0)],
'asus': [shwtemp(label='', current=47.0, high=None, critical=None)],
'coretemp': [shwtemp(label='Physical id 0', current=52.0, high=100.0,
→˓critical=100.0),

shwtemp(label='Core 0', current=45.0, high=100.0, critical=100.0),
shwtemp(label='Core 1', current=52.0, high=100.0, critical=100.0),
shwtemp(label='Core 2', current=45.0, high=100.0, critical=100.0),
shwtemp(label='Core 3', current=47.0, high=100.0, critical=100.0)]}

See also temperatures.py and sensors.py for an example application.

Availability: Linux, FreeBSD

New in version 5.1.0.

Changed in version 5.5.0: added FreeBSD support

psutil.sensors_fans()
Return hardware fans speed. Each entry is a named tuple representing a certain hardware sensor fan. Fan speed
is expressed in RPM (rounds per minute). If sensors are not supported by the OS an empty dict is returned.
Example:

>>> import psutil
>>> psutil.sensors_fans()
{'asus': [sfan(label='cpu_fan', current=3200)]}

See also fans.py and sensors.py for an example application.

Availability: Linux, macOS

New in version 5.2.0.

psutil.sensors_battery()
Return battery status information as a named tuple including the following values. If no battery is installed or
metrics can’t be determined None is returned.

• percent: battery power left as a percentage.

• secsleft: a rough approximation of how many seconds are left before the battery runs out of power. If the
AC power cable is connected this is set to psutil.POWER_TIME_UNLIMITED. If it can’t be deter-
mined it is set to psutil.POWER_TIME_UNKNOWN .

• power_plugged: True if the AC power cable is connected, False if not or None if it can’t be deter-
mined.

Example:

>>> import psutil
>>>
>>> def secs2hours(secs):

(continues on next page)

5.5. Sensors 19

https://github.com/giampaolo/psutil/blob/master/scripts/temperatures.py
https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py
https://github.com/giampaolo/psutil/blob/master/scripts/fans.py
https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py

psutil Documentation, Release 5.6.7

(continued from previous page)

... mm, ss = divmod(secs, 60)

... hh, mm = divmod(mm, 60)

... return "%d:%02d:%02d" % (hh, mm, ss)

...
>>> battery = psutil.sensors_battery()
>>> battery
sbattery(percent=93, secsleft=16628, power_plugged=False)
>>> print("charge = %s%%, time left = %s" % (battery.percent, secs2hours(battery.
→˓secsleft)))
charge = 93%, time left = 4:37:08

See also battery.py and sensors.py for an example application.

Availability: Linux, Windows, FreeBSD

New in version 5.1.0.

Changed in version 5.4.2: added macOS support

5.6 Other system info

psutil.boot_time()
Return the system boot time expressed in seconds since the epoch. Example:

>>> import psutil, datetime
>>> psutil.boot_time()
1389563460.0
>>> datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:
→˓%S")
'2014-01-12 22:51:00'

Note: on Windows this function may return a time which is off by 1 second if it’s used across different processes
(see issue #1007).

psutil.users()
Return users currently connected on the system as a list of named tuples including the following fields:

• user: the name of the user.

• terminal: the tty or pseudo-tty associated with the user, if any, else None.

• host: the host name associated with the entry, if any.

• started: the creation time as a floating point number expressed in seconds since the epoch.

• pid: the PID of the login process (like sshd, tmux, gdm-session-worker, . . .). On Windows and OpenBSD
this is always set to None.

Example:

>>> import psutil
>>> psutil.users()
[suser(name='giampaolo', terminal='pts/2', host='localhost', started=1340737536.0,
→˓ pid=1352),
suser(name='giampaolo', terminal='pts/3', host='localhost', started=1340737792.0,
→˓ pid=1788)]

20 Chapter 5. System related functions

https://github.com/giampaolo/psutil/blob/master/scripts/battery.py
https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py
https://github.com/giampaolo/psutil/issues/1007

psutil Documentation, Release 5.6.7

Changed in version 5.3.0: added “pid” field

5.6. Other system info 21

psutil Documentation, Release 5.6.7

22 Chapter 5. System related functions

CHAPTER 6

Processes

6.1 Functions

psutil.pids()
Return a sorted list of current running PIDs. To iterate over all processes and avoid race conditions
process_iter() should be preferred.

>>> import psutil
>>> psutil.pids()
[1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, ..., 32498]

Changed in version 5.6.0: PIDs are returned in sorted order

psutil.process_iter(attrs=None, ad_value=None)
Return an iterator yielding a Process class instance for all running processes on the local machine. Every
instance is only created once and then cached into an internal table which is updated every time an element is
yielded. Cached Process instances are checked for identity so that you’re safe in case a PID has been reused
by another process, in which case the cached instance is updated. This is preferred over psutil.pids()
for iterating over processes. Sorting order in which processes are returned is based on their PID. attrs and
ad_value have the same meaning as in Process.as_dict(). If attrs is specified Process.as_dict()
is called internally and the resulting dict is stored as a info attribute which is attached to the returned Process
instances. If attrs is an empty list it will retrieve all process info (slow). Example usage:

>>> import psutil
>>> for proc in psutil.process_iter():
... try:
... pinfo = proc.as_dict(attrs=['pid', 'name', 'username'])
... except psutil.NoSuchProcess:
... pass
... else:
... print(pinfo)
...
{'name': 'systemd', 'pid': 1, 'username': 'root'}

(continues on next page)

23

psutil Documentation, Release 5.6.7

(continued from previous page)

{'name': 'kthreadd', 'pid': 2, 'username': 'root'}
{'name': 'ksoftirqd/0', 'pid': 3, 'username': 'root'}
...

More compact version using attrs parameter:

>>> import psutil
>>> for proc in psutil.process_iter(attrs=['pid', 'name', 'username']):
... print(proc.info)
...
{'name': 'systemd', 'pid': 1, 'username': 'root'}
{'name': 'kthreadd', 'pid': 2, 'username': 'root'}
{'name': 'ksoftirqd/0', 'pid': 3, 'username': 'root'}
...

Example of a dict comprehensions to create a {pid: info, ...} data structure:

>>> import psutil
>>> procs = {p.pid: p.info for p in psutil.process_iter(attrs=['name', 'username
→˓'])}
>>> procs
{1: {'name': 'systemd', 'username': 'root'},
2: {'name': 'kthreadd', 'username': 'root'},
3: {'name': 'ksoftirqd/0', 'username': 'root'},
...}

Example showing how to filter processes by name:

>>> import psutil
>>> [p.info for p in psutil.process_iter(attrs=['pid', 'name']) if 'python' in p.
→˓info['name']]
[{'name': 'python3', 'pid': 21947},
{'name': 'python', 'pid': 23835}]

See also process filtering section for more examples.

Changed in version 5.3.0: added “attrs” and “ad_value” parameters.

psutil.pid_exists(pid)
Check whether the given PID exists in the current process list. This is faster than doing pid in psutil.
pids() and should be preferred.

psutil.wait_procs(procs, timeout=None, callback=None)
Convenience function which waits for a list of Process instances to terminate. Return a (gone, alive)
tuple indicating which processes are gone and which ones are still alive. The gone ones will have a new return-
code attribute indicating process exit status (will be None for processes which are not our children). callback
is a function which gets called when one of the processes being waited on is terminated and a Process instance
is passed as callback argument). This function will return as soon as all processes terminate or when timeout
(seconds) occurs. Differently from Process.wait() it will not raise TimeoutExpired if timeout occurs.
A typical use case may be:

• send SIGTERM to a list of processes

• give them some time to terminate

• send SIGKILL to those ones which are still alive

Example which terminates and waits all the children of this process:

24 Chapter 6. Processes

psutil Documentation, Release 5.6.7

import psutil

def on_terminate(proc):
print("process {} terminated with exit code {}".format(proc, proc.returncode))

procs = psutil.Process().children()
for p in procs:

p.terminate()
gone, alive = psutil.wait_procs(procs, timeout=3, callback=on_terminate)
for p in alive:

p.kill()

6.2 Exceptions

class psutil.Error
Base exception class. All other exceptions inherit from this one.

class psutil.NoSuchProcess(pid, name=None, msg=None)
Raised by Process class methods when no process with the given pid is found in the current process list or
when a process no longer exists. name is the name the process had before disappearing and gets set only if
Process.name() was previously called.

class psutil.ZombieProcess(pid, name=None, ppid=None, msg=None)
This may be raised by Process class methods when querying a zombie process on UNIX (Windows doesn’t
have zombie processes). Depending on the method called the OS may be able to succeed in retrieving the process
information or not. Note: this is a subclass of NoSuchProcess so if you’re not interested in retrieving zombies
(e.g. when using process_iter()) you can ignore this exception and just catch NoSuchProcess.

New in version 3.0.0.

class psutil.AccessDenied(pid=None, name=None, msg=None)
Raised by Process class methods when permission to perform an action is denied. “name” is the name of the
process (may be None).

class psutil.TimeoutExpired(seconds, pid=None, name=None, msg=None)
Raised by Process.wait() if timeout expires and process is still alive.

6.3 Process class

class psutil.Process(pid=None)
Represents an OS process with the given pid. If pid is omitted current process pid (os.getpid) is used. Raise
NoSuchProcess if pid does not exist. On Linux pid can also refer to a thread ID (the id field returned by
threads() method). When accessing methods of this class always be prepared to catch NoSuchProcess
and AccessDenied exceptions. hash builtin can be used against instances of this class in order to identify a
process univocally over time (the hash is determined by mixing process PID + creation time). As such it can
also be used with set.

Note: In order to efficiently fetch more than one information about the process at the same time, make sure to
use either oneshot() context manager or as_dict() utility method.

6.2. Exceptions 25

https://docs.python.org/3/library/os.html#os.getpid
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/stdtypes.html#types-set.

psutil Documentation, Release 5.6.7

Note: the way this class is bound to a process is uniquely via its PID. That means that if the process ter-
minates and the OS reuses its PID you may end up interacting with another process. The only exceptions
for which process identity is preemptively checked (via PID + creation time) is for the following methods:
nice() (set), ionice() (set), cpu_affinity() (set), rlimit() (set), children(), parent(),
parents(), suspend() resume(), send_signal(), terminate() kill(). To prevent this prob-
lem for all other methods you can use is_running() before querying the process or process_iter() in
case you’re iterating over all processes. It must be noted though that unless you deal with very “old” (inactive)
Process instances this will hardly represent a problem.

oneshot()
Utility context manager which considerably speeds up the retrieval of multiple process information at the
same time. Internally different process info (e.g. name(), ppid(), uids(), create_time(), . . .)
may be fetched by using the same routine, but only one value is returned and the others are discarded.
When using this context manager the internal routine is executed once (in the example below on name())
the value of interest is returned and the others are cached. The subsequent calls sharing the same internal
routine will return the cached value. The cache is cleared when exiting the context manager block. The
advice is to use this every time you retrieve more than one information about the process. If you’re lucky,
you’ll get a hell of a speedup. Example:

>>> import psutil
>>> p = psutil.Process()
>>> with p.oneshot():
... p.name() # execute internal routine once collecting multiple info
... p.cpu_times() # return cached value
... p.cpu_percent() # return cached value
... p.create_time() # return cached value
... p.ppid() # return cached value
... p.status() # return cached value
...
>>>

Here’s a list of methods which can take advantage of the speedup depending on what platform you’re
on. In the table below horizontal emtpy rows indicate what process methods can be efficiently grouped
together internally. The last column (speedup) shows an approximation of the speedup you can get if you
call all the methods together (best case scenario).

26 Chapter 6. Processes

psutil Documentation, Release 5.6.7

Linux Windows macOS BSD SunOS AIX
cpu_num() cpu_percent()cpu_percent()cpu_num() name() name()
cpu_percent()cpu_times() cpu_times() cpu_percent()cmdline() cmdline()
cpu_times() io_counters()memory_info()cpu_times() create_time()create_time()
create_time()memory_info()memory_percent()create_time()
name() memory_maps()num_ctx_switches()gids() memory_info()memory_info()
ppid() num_ctx_switches()num_threads()io_counters()memory_percent()memory_percent()
status() num_handles() name() num_threads()num_threads()
terminal() num_threads()create_time()memory_info()ppid() ppid()

username() gids() memory_percent()status() status()
gids() name() num_ctx_switches()terminal() terminal()
num_ctx_switches() ppid() ppid()
num_threads() status() status() gids() gids()
uids() terminal() terminal() uids() uids()
username() uids() uids() username() username()

username() username()
memory_full_info()
memory_maps()
speedup:
+2.6x

speedup:
+1.8x / +6.5x

speedup:
+1.9x

speedup:
+2.0x

speedup:
+1.3x

speedup:
+1.3x

New in version 5.0.0.

pid
The process PID. This is the only (read-only) attribute of the class.

ppid()
The process parent PID. On Windows the return value is cached after first call. Not on POSIX because
ppid may change if process becomes a zombie See also parent() and parents() methods.

name()
The process name. On Windows the return value is cached after first call. Not on POSIX because the
process name may change. See also how to find a process by name.

exe()
The process executable as an absolute path. On some systems this may also be an empty string. The return
value is cached after first call.

>>> import psutil
>>> psutil.Process().exe()
'/usr/bin/python2.7'

cmdline()
The command line this process has been called with as a list of strings. The return value is not cached
because the cmdline of a process may change.

>>> import psutil
>>> psutil.Process().cmdline()
['python', 'manage.py', 'runserver']

environ()
The environment variables of the process as a dict. Note: this might not reflect changes made after the
process started.

6.3. Process class 27

psutil Documentation, Release 5.6.7

>>> import psutil
>>> psutil.Process().environ()
{'LC_NUMERIC': 'it_IT.UTF-8', 'QT_QPA_PLATFORMTHEME': 'appmenu-qt5', 'IM_
→˓CONFIG_PHASE': '1', 'XDG_GREETER_DATA_DIR': '/var/lib/lightdm-data/giampaolo
→˓', 'GNOME_DESKTOP_SESSION_ID': 'this-is-deprecated', 'XDG_CURRENT_DESKTOP':
→˓'Unity', 'UPSTART_EVENTS': 'started starting', 'GNOME_KEYRING_PID': '',
→˓'XDG_VTNR': '7', 'QT_IM_MODULE': 'ibus', 'LOGNAME': 'giampaolo', 'USER':
→˓'giampaolo', 'PATH': '/home/giampaolo/bin:/usr/local/sbin:/usr/local/bin:/
→˓usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/
→˓giampaolo/svn/sysconf/bin', 'LC_PAPER': 'it_IT.UTF-8', 'GNOME_KEYRING_
→˓CONTROL': '', 'GTK_IM_MODULE': 'ibus', 'DISPLAY': ':0', 'LANG': 'en_US.UTF-8
→˓', 'LESS_TERMCAP_se': '\x1b[0m', 'TERM': 'xterm-256color', 'SHELL': '/bin/
→˓bash', 'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session0',
→˓'XAUTHORITY': '/home/giampaolo/.Xauthority', 'LANGUAGE': 'en_US', 'COMPIZ_
→˓CONFIG_PROFILE': 'ubuntu', 'LC_MONETARY': 'it_IT.UTF-8', 'QT_LINUX_
→˓ACCESSIBILITY_ALWAYS_ON': '1', 'LESS_TERMCAP_me': '\x1b[0m', 'LESS_TERMCAP_
→˓md': '\x1b[01;38;5;74m', 'LESS_TERMCAP_mb': '\x1b[01;31m', 'HISTSIZE':
→˓'100000', 'UPSTART_INSTANCE': '', 'CLUTTER_IM_MODULE': 'xim', 'WINDOWID':
→˓'58786407', 'EDITOR': 'vim', 'SESSIONTYPE': 'gnome-session', 'XMODIFIERS':
→˓'@im=ibus', 'GPG_AGENT_INFO': '/home/giampaolo/.gnupg/S.gpg-agent:0:1',
→˓'HOME': '/home/giampaolo', 'HISTFILESIZE': '100000', 'QT4_IM_MODULE': 'xim',
→˓ 'GTK2_MODULES': 'overlay-scrollbar', 'XDG_SESSION_DESKTOP': 'ubuntu',
→˓'SHLVL': '1', 'XDG_RUNTIME_DIR': '/run/user/1000', 'INSTANCE': 'Unity', 'LC_
→˓ADDRESS': 'it_IT.UTF-8', 'SSH_AUTH_SOCK': '/run/user/1000/keyring/ssh',
→˓'VTE_VERSION': '4205', 'GDMSESSION': 'ubuntu', 'MANDATORY_PATH': '/usr/
→˓share/gconf/ubuntu.mandatory.path', 'VISUAL': 'vim', 'DESKTOP_SESSION':
→˓'ubuntu', 'QT_ACCESSIBILITY': '1', 'XDG_SEAT_PATH': '/org/freedesktop/
→˓DisplayManager/Seat0', 'LESSCLOSE': '/usr/bin/lesspipe %s %s', 'LESSOPEN':
→˓'| /usr/bin/lesspipe %s', 'XDG_SESSION_ID': 'c2', 'DBUS_SESSION_BUS_ADDRESS
→˓': 'unix:abstract=/tmp/dbus-9GAJpvnt8r', '_': '/usr/bin/python', 'DEFAULTS_
→˓PATH': '/usr/share/gconf/ubuntu.default.path', 'LC_IDENTIFICATION': 'it_IT.
→˓UTF-8', 'LESS_TERMCAP_ue': '\x1b[0m', 'UPSTART_SESSION': 'unix:abstract=/
→˓com/ubuntu/upstart-session/1000/1294', 'XDG_CONFIG_DIRS': '/etc/xdg/xdg-
→˓ubuntu:/usr/share/upstart/xdg:/etc/xdg', 'GTK_MODULES': 'gail:atk-
→˓bridge:unity-gtk-module', 'XDG_SESSION_TYPE': 'x11', 'PYTHONSTARTUP': '/
→˓home/giampaolo/.pythonstart', 'LC_NAME': 'it_IT.UTF-8', 'OLDPWD': '/home/
→˓giampaolo/svn/curio_giampaolo/tests', 'GDM_LANG': 'en_US', 'LC_TELEPHONE':
→˓'it_IT.UTF-8', 'HISTCONTROL': 'ignoredups:erasedups', 'LC_MEASUREMENT': 'it_
→˓IT.UTF-8', 'PWD': '/home/giampaolo/svn/curio_giampaolo', 'JOB': 'gnome-
→˓session', 'LESS_TERMCAP_us': '\x1b[04;38;5;146m', 'UPSTART_JOB': 'unity-
→˓settings-daemon', 'LC_TIME': 'it_IT.UTF-8', 'LESS_TERMCAP_so': '\x1b[38;5;
→˓246m', 'PAGER': 'less', 'XDG_DATA_DIRS': '/usr/share/ubuntu:/usr/share/
→˓gnome:/usr/local/share/:/usr/share/:/var/lib/snapd/desktop', 'XDG_SEAT':
→˓'seat0'}

Availability: Linux, macOS, Windows, SunOS

New in version 4.0.0.

Changed in version 5.3.0: added SunOS support

Changed in version 5.6.3: added AIX suport

create_time()
The process creation time as a floating point number expressed in seconds since the epoch, in UTC. The
return value is cached after first call.

>>> import psutil, datetime
>>> p = psutil.Process()

(continues on next page)

28 Chapter 6. Processes

psutil Documentation, Release 5.6.7

(continued from previous page)

>>> p.create_time()
1307289803.47
>>> datetime.datetime.fromtimestamp(p.create_time()).strftime("%Y-%m-%d %H:%M:
→˓%S")
'2011-03-05 18:03:52'

as_dict(attrs=None, ad_value=None)
Utility method retrieving multiple process information as a dictionary. If attrs is specified it
must be a list of strings reflecting available Process class’s attribute names. Here’s a list of
possible string values: 'cmdline', 'connections', 'cpu_affinity', 'cpu_num',
'cpu_percent', 'cpu_times', 'create_time', 'cwd', 'environ', 'exe',
'gids', 'io_counters', 'ionice', 'memory_full_info', 'memory_info',
'memory_maps', 'memory_percent', 'name', 'nice', 'num_ctx_switches',
'num_fds', 'num_handles', 'num_threads', 'open_files', 'pid', 'ppid',
'status', 'terminal', 'threads', 'uids', 'username'`. If attrs argument is not
passed all public read only attributes are assumed. ad_value is the value which gets assigned to a dict
key in case AccessDenied or ZombieProcess exception is raised when retrieving that particular
process information. Internally, as_dict() uses oneshot() context manager so there’s no need you
use it also.

>>> import psutil
>>> p = psutil.Process()
>>> p.as_dict(attrs=['pid', 'name', 'username'])
{'username': 'giampaolo', 'pid': 12366, 'name': 'python'}
>>>
>>> # get a list of valid attrs names
>>> list(psutil.Process().as_dict().keys())
['status', 'cpu_num', 'num_ctx_switches', 'pid', 'memory_full_info',
→˓'connections', 'cmdline', 'create_time', 'ionice', 'num_fds', 'memory_maps',
→˓ 'cpu_percent', 'terminal', 'ppid', 'cwd', 'nice', 'username', 'cpu_times',
→˓'io_counters', 'memory_info', 'threads', 'open_files', 'name', 'num_threads
→˓', 'exe', 'uids', 'gids', 'cpu_affinity', 'memory_percent', 'environ']

Changed in version 3.0.0: ad_value is used also when incurring into ZombieProcess exception, not
only AccessDenied

Changed in version 4.5.0: as_dict() is considerably faster thanks to oneshot() context manager.

parent()
Utility method which returns the parent process as a Process object, preemptively checking whether PID
has been reused. If no parent PID is known return None. See also ppid() and parents() methods.

parents()
Utility method which return the parents of this process as a list of Process instances. If no parents are
known return an empty list. See also ppid() and parent() methods.

New in version 5.6.0.

status()
The current process status as a string. The returned string is one of the psutil.STATUS_* constants.

cwd()
The process current working directory as an absolute path.

Changed in version 5.6.4: added support for NetBSD

username()
The name of the user that owns the process. On UNIX this is calculated by using real process uid.

6.3. Process class 29

psutil Documentation, Release 5.6.7

uids()
The real, effective and saved user ids of this process as a named tuple. This is the same as os.getresuid but
can be used for any process PID.

Availability: UNIX

gids()
The real, effective and saved group ids of this process as a named tuple. This is the same as os.getresgid
but can be used for any process PID.

Availability: UNIX

terminal()
The terminal associated with this process, if any, else None. This is similar to “tty” command but can be
used for any process PID.

Availability: UNIX

nice(value=None)
Get or set process niceness (priority). On UNIX this is a number which usually goes from -20 to 20. The
higher the nice value, the lower the priority of the process.

>>> import psutil
>>> p = psutil.Process()
>>> p.nice(10) # set
>>> p.nice() # get
10
>>>

Starting from Python 3.3 this functionality is also available as os.getpriority and os.setpriority (see BPO-
10784). On Windows this is implemented via GetPriorityClass and SetPriorityClass Windows APIs and
value is one of the psutil.*_PRIORITY_CLASS constants reflecting the MSDN documentation. Ex-
ample which increases process priority on Windows:

>>> p.nice(psutil.HIGH_PRIORITY_CLASS)

ionice(ioclass=None, value=None)
Get or set process I/O niceness (priority). If no argument is provided it acts as a get, returning a
(ioclass, value) tuple on Linux and a ioclass integer on Windows. If ioclass is provided it acts as
a set. In this case an additional value can be specified on Linux only in order to increase or decrease the
I/O priority even further. Here’s the possible platform-dependent ioclass values.

Linux (see ioprio_get manual):

• IOPRIO_CLASS_RT: (high) the process gets first access to the disk every time. Use it with care as
it can starve the entire system. Additional priority level can be specified and ranges from 0 (highest)
to 7 (lowest).

• IOPRIO_CLASS_BE: (normal) the default for any process that hasn’t set a specific I/O priority.
Additional priority level ranges from 0 (highest) to 7 (lowest).

• IOPRIO_CLASS_IDLE: (low) get I/O time when no-one else needs the disk. No additional value is
accepted.

• IOPRIO_CLASS_NONE: returned when no priority was previously set.

Windows:

• IOPRIO_HIGH: highest priority.

• IOPRIO_NORMAL: default priority.

30 Chapter 6. Processes

https://docs.python.org//library/os.html#os.getresuid
https://docs.python.org//library/os.html#os.getresgid
https://docs.python.org/3/library/os.html#os.getpriority
https://docs.python.org/3/library/os.html#os.setpriority
https://bugs.python.org/issue10784
https://bugs.python.org/issue10784
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getpriorityclass
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setpriorityclass
https://linux.die.net/man/2/ioprio_get

psutil Documentation, Release 5.6.7

• IOPRIO_LOW: low priority.

• IOPRIO_VERYLOW: lowest priority.

Here’s an example on how to set the highest I/O priority depending on what platform you’re on:

>>> import psutil
>>> p = psutil.Process()
>>> if psutil.LINUX:
... p.ionice(psutil.IOPRIO_CLASS_RT, value=7)
... else:
... p.ionice(psutil.IOPRIO_HIGH)
...
>>> p.ionice() # get
pionice(ioclass=<IOPriority.IOPRIO_CLASS_RT: 1>, value=7)

Availability: Linux, Windows Vista+

Changed in version 5.6.2: Windows accepts new IOPRIO_* constants including new IOPRIO_HIGH.

rlimit(resource, limits=None)
Get or set process resource limits (see man prlimit). resource is one of the psutil.RLIMIT_* constants.
limits is a (soft, hard) tuple. This is the same as resource.getrlimit and resource.setrlimit but can be
used for any process PID, not only os.getpid. For get, return value is a (soft, hard) tuple. Each value
may be either and integer or psutil.RLIMIT_*. Example:

>>> import psutil
>>> p = psutil.Process()
>>> # process may open no more than 128 file descriptors
>>> p.rlimit(psutil.RLIMIT_NOFILE, (128, 128))
>>> # process may create files no bigger than 1024 bytes
>>> p.rlimit(psutil.RLIMIT_FSIZE, (1024, 1024))
>>> # get
>>> p.rlimit(psutil.RLIMIT_FSIZE)
(1024, 1024)
>>>

Availability: Linux

io_counters()
Return process I/O statistics as a named tuple. For Linux you can refer to /proc filesystem documentation.

• read_count: the number of read operations performed (cumulative). This is supposed to count the
number of read-related syscalls such as read() and pread() on UNIX.

• write_count: the number of write operations performed (cumulative). This is supposed to count the
number of write-related syscalls such as write() and pwrite() on UNIX.

• read_bytes: the number of bytes read (cumulative). Always -1 on BSD.

• write_bytes: the number of bytes written (cumulative). Always -1 on BSD.

Linux specific:

• read_chars (Linux): the amount of bytes which this process passed to read() and pread()
syscalls (cumulative). Differently from read_bytes it doesn’t care whether or not actual physical
disk I/O occurred.

• write_chars (Linux): the amount of bytes which this process passed to write() and pwrite()
syscalls (cumulative). Differently from write_bytes it doesn’t care whether or not actual physical disk
I/O occurred.

6.3. Process class 31

https://linux.die.net/man/2/prlimit
https://docs.python.org/3/library/resource.html#resource.getrlimit
https://docs.python.org/3/library/resource.html#resource.setrlimit
https://docs.python.org/3/library/os.html#os.getpid
https://stackoverflow.com/questions/3633286/

psutil Documentation, Release 5.6.7

Windows specific:

• other_count (Windows): the number of I/O operations performed other than read and write opera-
tions.

• other_bytes (Windows): the number of bytes transferred during operations other than read and write
operations.

>>> import psutil
>>> p = psutil.Process()
>>> p.io_counters()
pio(read_count=454556, write_count=3456, read_bytes=110592, write_bytes=0,
→˓read_chars=769931, write_chars=203)

Availability: Linux, BSD, Windows, AIX

Changed in version 5.2.0: added read_chars and write_chars on Linux; added other_count and other_bytes
on Windows.

num_ctx_switches()
The number voluntary and involuntary context switches performed by this process (cumulative).

Changed in version 5.4.1: added AIX support

num_fds()
The number of file descriptors currently opened by this process (non cumulative).

Availability: UNIX

num_handles()
The number of handles currently used by this process (non cumulative).

Availability: Windows

num_threads()
The number of threads currently used by this process (non cumulative).

threads()
Return threads opened by process as a list of named tuples including thread id and thread CPU times
(user/system). On OpenBSD this method requires root privileges.

cpu_times()
Return a named tuple representing the accumulated process times, in seconds (see explanation). This is
similar to os.times but can be used for any process PID.

• user: time spent in user mode.

• system: time spent in kernel mode.

• children_user: user time of all child processes (always 0 on Windows and macOS).

• system_user: user time of all child processes (always 0 on Windows and macOS).

• iowait: (Linux) time spent waiting for blocking I/O to complete. This value is excluded from user
and system times count (because the CPU is not doing any work).

>>> import psutil
>>> p = psutil.Process()
>>> p.cpu_times()
pcputimes(user=0.03, system=0.67, children_user=0.0, children_system=0.0,
→˓iowait=0.08)
>>> sum(p.cpu_times()[:2]) # cumulative, excluding children and iowait
0.70

32 Chapter 6. Processes

http://stackoverflow.com/questions/556405/
https://docs.python.org//library/os.html#os.times

psutil Documentation, Release 5.6.7

Changed in version 4.1.0: return two extra fields: children_user and children_system.

Changed in version 5.6.4: added iowait on Linux.

cpu_percent(interval=None)
Return a float representing the process CPU utilization as a percentage which can also be > 100.0 in
case of a process running multiple threads on different CPUs. When interval is > 0.0 compares process
times to system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None
compares process times to system CPU times elapsed since last call, returning immediately. That means
the first time this is called it will return a meaningless 0.0 value which you are supposed to ignore. In
this case is recommended for accuracy that this function be called a second time with at least 0.1 seconds
between calls. Example:

>>> import psutil
>>> p = psutil.Process()
>>> # blocking
>>> p.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> p.cpu_percent(interval=None)
2.9

Note: the returned value can be > 100.0 in case of a process running multiple threads on different CPU
cores.

Note: the returned value is explicitly not split evenly between all available CPUs (differently from
psutil.cpu_percent()). This means that a busy loop process running on a system with 2 logi-
cal CPUs will be reported as having 100% CPU utilization instead of 50%. This was done in order to be
consistent with top UNIX utility and also to make it easier to identify processes hogging CPU resources
independently from the number of CPUs. It must be noted that taskmgr.exe on Windows does not
behave like this (it would report 50% usage instead). To emulate Windows taskmgr.exe behavior you
can do: p.cpu_percent() / psutil.cpu_count().

Warning: the first time this method is called with interval = 0.0 or None it will return a meaningless
0.0 value which you are supposed to ignore.

cpu_affinity(cpus=None)
Get or set process current CPU affinity. CPU affinity consists in telling the OS to run a process on a limited
set of CPUs only (on Linux cmdline, taskset command is typically used). If no argument is passed it
returns the current CPU affinity as a list of integers. If passed it must be a list of integers specifying the
new CPUs affinity. If an empty list is passed all eligible CPUs are assumed (and set). On some systems
such as Linux this may not necessarily mean all available logical CPUs as in list(range(psutil.
cpu_count()))).

>>> import psutil
>>> psutil.cpu_count()
4
>>> p = psutil.Process()
>>> # get
>>> p.cpu_affinity()
[0, 1, 2, 3]

(continues on next page)

6.3. Process class 33

http://www.linuxjournal.com/article/6799?page=0,0

psutil Documentation, Release 5.6.7

(continued from previous page)

>>> # set; from now on, process will run on CPU #0 and #1 only
>>> p.cpu_affinity([0, 1])
>>> p.cpu_affinity()
[0, 1]
>>> # reset affinity against all eligible CPUs
>>> p.cpu_affinity([])

Availability: Linux, Windows, FreeBSD

Changed in version 2.2.0: added support for FreeBSD

Changed in version 5.1.0: an empty list can be passed to set affinity against all eligible CPUs.

cpu_num()
Return what CPU this process is currently running on. The returned number should be <= psutil.
cpu_count(). On FreeBSD certain kernel process may return -1. It may be used in conjunction with
psutil.cpu_percent(percpu=True) to observe the system workload distributed across multiple
CPUs as shown by cpu_distribution.py example script.

Availability: Linux, FreeBSD, SunOS

New in version 5.1.0.

memory_info()
Return a named tuple with variable fields depending on the platform representing memory information
about the process. The “portable” fields available on all plaforms are rss and vms. All numbers are
expressed in bytes.

Linux macOS BSD Solaris AIX Windows
rss rss rss rss rss rss (alias for wset)
vms vms vms vms vms vms (alias for pagefile)
shared pfaults text num_page_faults
text pageins data peak_wset
lib stack wset
data peak_paged_pool
dirty paged_pool

peak_nonpaged_pool
nonpaged_pool
pagefile
peak_pagefile
private

• rss: aka “Resident Set Size”, this is the non-swapped physical memory a process has used. On UNIX
it matches “top“‘s RES column). On Windows this is an alias for wset field and it matches “Mem
Usage” column of taskmgr.exe.

• vms: aka “Virtual Memory Size”, this is the total amount of virtual memory used by the process. On
UNIX it matches “top“‘s VIRT column. On Windows this is an alias for pagefile field and it matches
“Mem Usage” “VM Size” column of taskmgr.exe.

• shared: (Linux) memory that could be potentially shared with other processes. This matches “top“‘s
SHR column).

• text (Linux, BSD): aka TRS (text resident set) the amount of memory devoted to executable code.
This matches “top“‘s CODE column).

34 Chapter 6. Processes

https://github.com/giampaolo/psutil/blob/master/scripts/cpu_distribution.py

psutil Documentation, Release 5.6.7

• data (Linux, BSD): aka DRS (data resident set) the amount of physical memory devoted to other than
executable code. It matches “top“‘s DATA column).

• lib (Linux): the memory used by shared libraries.

• dirty (Linux): the number of dirty pages.

• pfaults (macOS): number of page faults.

• pageins (macOS): number of actual pageins.

For on explanation of Windows fields rely on PROCESS_MEMORY_COUNTERS_EX structure doc.
Example on Linux:

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info()
pmem(rss=15491072, vms=84025344, shared=5206016, text=2555904, lib=0,
→˓data=9891840, dirty=0)

Changed in version 4.0.0: multiple fields are returned, not only rss and vms.

memory_info_ex()
Same as memory_info() (deprecated).

Warning: deprecated in version 4.0.0; use memory_info() instead.

memory_full_info()
This method returns the same information as memory_info(), plus, on some platform (Linux, macOS,
Windows), also provides additional metrics (USS, PSS and swap). The additional metrics provide a better
representation of “effective” process memory consumption (in case of USS) as explained in detail in this
blog post. It does so by passing through the whole process address. As such it usually requires higher
user privileges than memory_info() and is considerably slower. On platforms where extra fields are
not implemented this simply returns the same metrics as memory_info().

• uss (Linux, macOS, Windows): aka “Unique Set Size”, this is the memory which is unique to a process
and which would be freed if the process was terminated right now.

• pss (Linux): aka “Proportional Set Size”, is the amount of memory shared with other processes,
accounted in a way that the amount is divided evenly between the processes that share it. I.e. if a
process has 10 MBs all to itself and 10 MBs shared with another process its PSS will be 15 MBs.

• swap (Linux): amount of memory that has been swapped out to disk.

Note: uss is probably the most representative metric for determining how much memory is actually being
used by a process. It represents the amount of memory that would be freed if the process was terminated
right now.

Example on Linux:

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_full_info()
pfullmem(rss=10199040, vms=52133888, shared=3887104, text=2867200, lib=0,
→˓data=5967872, dirty=0, uss=6545408, pss=6872064, swap=0)
>>>

6.3. Process class 35

https://docs.microsoft.com/en-us/windows/desktop/api/psapi/ns-psapi-_process_memory_counters_ex
http://grodola.blogspot.com/2016/02/psutil-4-real-process-memory-and-environ.html

psutil Documentation, Release 5.6.7

See also procsmem.py for an example application.

New in version 4.0.0.

memory_percent(memtype="rss")
Compare process memory to total physical system memory and calculate process memory utilization as
a percentage. memtype argument is a string that dictates what type of process memory you want to com-
pare against. You can choose between the named tuple field names returned by memory_info() and
memory_full_info() (defaults to "rss").

Changed in version 4.0.0: added memtype parameter.

memory_maps(grouped=True)
Return process’s mapped memory regions as a list of named tuples whose fields are variable depending
on the platform. This method is useful to obtain a detailed representation of process memory usage as
explained here (the most important value is “private” memory). If grouped is True the mapped regions
with the same path are grouped together and the different memory fields are summed. If grouped is False
each mapped region is shown as a single entity and the named tuple will also include the mapped region’s
address space (addr) and permission set (perms). See pmap.py for an example application.

Linux Windows FreeBSD Solaris
rss rss rss rss
size private anonymous
pss ref_count locked
shared_clean shadow_count
shared_dirty
private_clean
private_dirty
referenced
anonymous
swap

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_maps()
[pmmap_grouped(path='/lib/x8664-linux-gnu/libutil-2.15.so', rss=32768,
→˓size=2125824, pss=32768, shared_clean=0, shared_dirty=0, private_
→˓clean=20480, private_dirty=12288, referenced=32768, anonymous=12288,
→˓swap=0),
pmmap_grouped(path='/lib/x8664-linux-gnu/libc-2.15.so', rss=3821568,
→˓size=3842048, pss=3821568, shared_clean=0, shared_dirty=0, private_clean=0,
→˓private_dirty=3821568, referenced=3575808, anonymous=3821568, swap=0),
...]

Availability: Linux, Windows, FreeBSD, SunOS

Changed in version 5.6.0: removed macOS support because inherently broken (see issue #1291)

children(recursive=False)
Return the children of this process as a list of Process instances. If recursive is True return all the parent
descendants. Pseudo code example assuming A == this process:

A

B (child)
X (grandchild)

Y (great grandchild)
(continues on next page)

36 Chapter 6. Processes

https://github.com/giampaolo/psutil/blob/master/scripts/procsmem.py
http://bmaurer.blogspot.it/2006/03/memory-usage-with-smaps.html
https://github.com/giampaolo/psutil/blob/master/scripts/pmap.py
https://github.com/giampaolo/psutil/issues/1291

psutil Documentation, Release 5.6.7

(continued from previous page)

C (child)
D (child)

>>> p.children()
B, C, D
>>> p.children(recursive=True)
B, X, Y, C, D

Note that in the example above if process X disappears process Y won’t be returned either as the reference
to process A is lost. This concept is well summaried by this unit test. See also how to kill a process tree
and terminate my children.

open_files()
Return regular files opened by process as a list of named tuples including the following fields:

• path: the absolute file name.

• fd: the file descriptor number; on Windows this is always -1.

Linux only:

• position (Linux): the file (offset) position.

• mode (Linux): a string indicating how the file was opened, similarly to open builtin mode argument.
Possible values are 'r', 'w', 'a', 'r+' and 'a+'. There’s no distinction between files opened in
binary or text mode ("b" or "t").

• flags (Linux): the flags which were passed to the underlying os.open C call when the file was opened
(e.g. os.O_RDONLY, os.O_TRUNC, etc).

>>> import psutil
>>> f = open('file.ext', 'w')
>>> p = psutil.Process()
>>> p.open_files()
[popenfile(path='/home/giampaolo/svn/psutil/file.ext', fd=3, position=0, mode=
→˓'w', flags=32769)]

Warning: on Windows this method is not reliable due to some limitations of the underlying Windows
API which may hang when retrieving certain file handles. In order to work around that psutil spawns a
thread for each handle and kills it if it’s not responding after 100ms. That implies that this method on
Windows is not guaranteed to enumerate all regular file handles (see issue 597). Also, it will only list
files living in the C:\ drive (see issue 1020).

Warning: on BSD this method can return files with a null path (“”) due to a kernel bug, hence it’s not
reliable (see issue 595).

Changed in version 3.1.0: no longer hangs on Windows.

Changed in version 4.1.0: new position, mode and flags fields on Linux.

connections(kind="inet")
Return socket connections opened by process as a list of named tuples. To get system-wide connections
use psutil.net_connections(). Every named tuple provides 6 attributes:

6.3. Process class 37

https://github.com/giampaolo/psutil/blob/65a52341b55faaab41f68ebc4ed31f18f0929754/psutil/tests/test_process.py#L1064-L1075
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/os.html#os.open
https://docs.python.org/3/library/os.html#os.O_RDONLY
https://docs.python.org/3/library/os.html#os.O_TRUNC
https://github.com/giampaolo/psutil/pull/597
https://github.com/giampaolo/psutil/pull/1020
https://github.com/giampaolo/psutil/pull/595

psutil Documentation, Release 5.6.7

• fd: the socket file descriptor. This can be passed to socket.fromfd to obtain a usable socket object. On
Windows, FreeBSD and SunOS this is always set to -1.

• family: the address family, either AF_INET, AF_INET6 or AF_UNIX.

• type: the address type, either SOCK_STREAM, SOCK_DGRAM or SOCK_SEQPACKET. .

• laddr: the local address as a (ip, port) named tuple or a path in case of AF_UNIX sockets.
For UNIX sockets see notes below.

• raddr: the remote address as a (ip, port) named tuple or an absolute path in case of UNIX
sockets. When the remote endpoint is not connected you’ll get an empty tuple (AF_INET*) or ""
(AF_UNIX). For UNIX sockets see notes below.

• status: represents the status of a TCP connection. The return value is one of the psutil.CONN_*
constants. For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.

The kind parameter is a string which filters for connections that fit the following criteria:

Kind value Connections using
"inet" IPv4 and IPv6
"inet4" IPv4
"inet6" IPv6
"tcp" TCP
"tcp4" TCP over IPv4
"tcp6" TCP over IPv6
"udp" UDP
"udp4" UDP over IPv4
"udp6" UDP over IPv6
"unix" UNIX socket (both UDP and TCP protocols)
"all" the sum of all the possible families and protocols

Example:

>>> import psutil
>>> p = psutil.Process(1694)
>>> p.name()
'firefox'
>>> p.connections()
[pconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_
→˓STREAM: 1>, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.
→˓135.91', port=80), status='ESTABLISHED'),
pconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_
→˓STREAM: 1>, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.
→˓100', port=80), status='CLOSING'),
pconn(fd=119, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_
→˓STREAM: 1>, laddr=addr(ip='10.0.0.1', port=60759), raddr=addr(ip='72.14.234.
→˓104', port=80), status='ESTABLISHED'),
pconn(fd=123, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_
→˓STREAM: 1>, laddr=addr(ip='10.0.0.1', port=51314), raddr=addr(ip='72.14.234.
→˓83', port=443), status='SYN_SENT')]

Note: (Solaris) UNIX sockets are not supported.

38 Chapter 6. Processes

https://docs.python.org/3/library/socket.html#socket.fromfd
https://docs.python.org/3/library/socket.html#socket.AF_INET
https://docs.python.org/3/library/socket.html#socket.AF_INET6
https://docs.python.org/3/library/socket.html#socket.AF_UNIX
https://docs.python.org/3/library/socket.html#socket.SOCK_STREAM
https://docs.python.org/3/library/socket.html#socket.SOCK_DGRAM
https://docs.python.org/3/library/socket.html#socket.SOCK_SEQPACKET

psutil Documentation, Release 5.6.7

Note: (Linux, FreeBSD) “raddr” field for UNIX sockets is always set to “”. This is a limitation of the OS.

Note: (OpenBSD) “laddr” and “raddr” fields for UNIX sockets are always set to “”. This is a limitation
of the OS.

Note: (AIX) psutil.AccessDenied is always raised unless running as root (lsof does the same).

Changed in version 5.3.0: : “laddr” and “raddr” are named tuples.

is_running()
Return whether the current process is running in the current process list. This is reliable also in case the
process is gone and its PID reused by another process, therefore it must be preferred over doing psutil.
pid_exists(p.pid).

Note: this will return True also if the process is a zombie (p.status() == psutil.
STATUS_ZOMBIE).

send_signal(signal)
Send a signal to process (see signal module constants) preemptively checking whether PID has been reused.
On UNIX this is the same as os.kill(pid, sig). On Windows only SIGTERM, CTRL_C_EVENT
and CTRL_BREAK_EVENT signals are supported and SIGTERM is treated as an alias for kill(). See
also how to kill a process tree and terminate my children.

Changed in version 3.2.0: support for CTRL_C_EVENT and CTRL_BREAK_EVENT signals on Win-
dows was added.

suspend()
Suspend process execution with SIGSTOP signal preemptively checking whether PID has been reused. On
UNIX this is the same as os.kill(pid, signal.SIGSTOP). On Windows this is done by suspend-
ing all process threads execution.

resume()
Resume process execution with SIGCONT signal preemptively checking whether PID has been reused. On
UNIX this is the same as os.kill(pid, signal.SIGCONT). On Windows this is done by resuming
all process threads execution.

terminate()
Terminate the process with SIGTERM signal preemptively checking whether PID has been reused. On
UNIX this is the same as os.kill(pid, signal.SIGTERM). On Windows this is an alias for
kill(). See also how to kill a process tree and terminate my children.

kill()
Kill the current process by using SIGKILL signal preemptively checking whether PID has been reused. On
UNIX this is the same as os.kill(pid, signal.SIGKILL). On Windows this is done by using
TerminateProcess. See also how to kill a process tree and terminate my children.

wait(timeout=None)
Wait for process termination and if the process is a child of the current one also return the exit code,
else None. On Windows there’s no such limitation (exit code is always returned). If the process is
already terminated immediately return None instead of raising NoSuchProcess. timeout is expressed
in seconds. If specified and the process is still alive raise TimeoutExpired exception. timeout=0

6.3. Process class 39

https://docs.python.org//library/signal.html
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-terminateprocess

psutil Documentation, Release 5.6.7

can be used in non-blocking apps: it will either return immediately or raise TimeoutExpired. To wait
for multiple processes use psutil.wait_procs().

>>> import psutil
>>> p = psutil.Process(9891)
>>> p.terminate()
>>> p.wait()

6.4 Popen class

class psutil.Popen(*args, **kwargs)
A more convenient interface to stdlib subprocess.Popen. It starts a sub process and you deal with it exactly as
when using subprocess.Popen. but in addition it also provides all the methods of psutil.Process class. For
method names common to both classes such as send_signal(), terminate() and kill() psutil.
Process implementation takes precedence. For a complete documentation refer to subprocess module docu-
mentation.

Note: Unlike subprocess.Popen this class preemptively checks whether PID has been reused on
send_signal(), terminate() and kill() so that you can’t accidentally terminate another process,
fixing BPO-6973.

>>> import psutil
>>> from subprocess import PIPE
>>>
>>> p = psutil.Popen(["/usr/bin/python", "-c", "print('hello')"], stdout=PIPE)
>>> p.name()
'python'
>>> p.username()
'giampaolo'
>>> p.communicate()
('hello\n', None)
>>> p.wait(timeout=2)
0
>>>

psutil.Popen objects are supported as context managers via the with statement: on exit, standard file de-
scriptors are closed, and the process is waited for. This is supported on all Python versions.

>>> import psutil, subprocess
>>> with psutil.Popen(["ifconfig"], stdout=subprocess.PIPE) as proc:
>>> log.write(proc.stdout.read())

Changed in version 4.4.0: added context manager support

40 Chapter 6. Processes

https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://bugs.python.org/issue6973

CHAPTER 7

Windows services

psutil.win_service_iter()
Return an iterator yielding a WindowsService class instance for all Windows services installed.

New in version 4.2.0.

Availability: Windows

psutil.win_service_get(name)
Get a Windows service by name, returning a WindowsService instance. Raise psutil.NoSuchProcess
if no service with such name exists.

New in version 4.2.0.

Availability: Windows

class psutil.WindowsService
Represents a Windows service with the given name. This class is returned by win_service_iter() and
win_service_get() functions and it is not supposed to be instantiated directly.

name()
The service name. This string is how a service is referenced and can be passed to win_service_get()
to get a new WindowsService instance.

display_name()
The service display name. The value is cached when this class is instantiated.

binpath()
The fully qualified path to the service binary/exe file as a string, including command line arguments.

username()
The name of the user that owns this service.

start_type()
A string which can either be “automatic”, “manual” or “disabled”.

pid()
The process PID, if any, else None. This can be passed to Process class to control the service’s process.

41

psutil Documentation, Release 5.6.7

status()
Service status as a string, which may be either “running”, “paused”, “start_pending”, “pause_pending”,
“continue_pending”, “stop_pending” or “stopped”.

description()
Service long description.

as_dict()
Utility method retrieving all the information above as a dictionary.

New in version 4.2.0.

Availability: Windows

Example code:

>>> import psutil
>>> list(psutil.win_service_iter())
[<WindowsService(name='AeLookupSvc', display_name='Application Experience') at
→˓38850096>,
<WindowsService(name='ALG', display_name='Application Layer Gateway Service') at
→˓38850128>,
<WindowsService(name='APNMCP', display_name='Ask Update Service') at 38850160>,
<WindowsService(name='AppIDSvc', display_name='Application Identity') at 38850192>,
...]

>>> s = psutil.win_service_get('alg')
>>> s.as_dict()
{'binpath': 'C:\\Windows\\System32\\alg.exe',
'description': 'Provides support for 3rd party protocol plug-ins for Internet
→˓Connection Sharing',
'display_name': 'Application Layer Gateway Service',
'name': 'alg',
'pid': None,
'start_type': 'manual',
'status': 'stopped',
'username': 'NT AUTHORITY\\LocalService'}

42 Chapter 7. Windows services

CHAPTER 8

Constants

8.1 Operating system constants

psutil.POSIX

psutil.LINUX

psutil.WINDOWS

psutil.MACOS

psutil.FREEBSD

psutil.NETBSD

psutil.OPENBSD

psutil.BSD

psutil.SUNOS

psutil.AIX
bool constants which define what platform you’re on. E.g. if on Windows, WINDOWS constant will be True,
all others will be False.

New in version 4.0.0.

Changed in version 5.4.0: added AIX

psutil.OSX
Alias for MACOS.

Warning: deprecated in version 5.4.7; use MACOS instead.

psutil.PROCFS_PATH
The path of the /proc filesystem on Linux, Solaris and AIX (defaults to "/proc"). You may want to re-set this
constant right after importing psutil in case your /proc filesystem is mounted elsewhere or if you want to retrieve

43

psutil Documentation, Release 5.6.7

information about Linux containers such as Docker, Heroku or LXC (see here for more info). It must be noted
that this trick works only for APIs which rely on /proc filesystem (e.g. memory APIs and most Process class
methods).

Availability: Linux, Solaris, AIX

New in version 3.2.3.

Changed in version 3.4.2: also available on Solaris.

Changed in version 5.4.0: also available on AIX.

8.2 Process status constants

psutil.STATUS_RUNNING

psutil.STATUS_SLEEPING

psutil.STATUS_DISK_SLEEP

psutil.STATUS_STOPPED

psutil.STATUS_TRACING_STOP

psutil.STATUS_ZOMBIE

psutil.STATUS_DEAD

psutil.STATUS_WAKE_KILL

psutil.STATUS_WAKING

psutil.STATUS_PARKED(Linux)

psutil.STATUS_IDLE(Linux, macOS, FreeBSD)

psutil.STATUS_LOCKED(FreeBSD)

psutil.STATUS_WAITING(FreeBSD)

psutil.STATUS_SUSPENDED(NetBSD)
Represent a process status. Returned by psutil.Process.status().

New in version 3.4.1: STATUS_SUSPENDED (NetBSD)

New in version 5.4.7: STATUS_PARKED (Linux)

8.3 Process priority constants

psutil.REALTIME_PRIORITY_CLASS

psutil.HIGH_PRIORITY_CLASS

psutil.ABOVE_NORMAL_PRIORITY_CLASS

psutil.NORMAL_PRIORITY_CLASS

psutil.IDLE_PRIORITY_CLASS

psutil.BELOW_NORMAL_PRIORITY_CLASS
Represent the priority of a process on Windows (see SetPriorityClass). They can be used in conjunction with
psutil.Process.nice() to get or set process priority.

44 Chapter 8. Constants

https://fabiokung.com/2014/03/13/memory-inside-linux-containers/
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setpriorityclass

psutil Documentation, Release 5.6.7

Availability: Windows

psutil.IOPRIO_CLASS_NONE

psutil.IOPRIO_CLASS_RT

psutil.IOPRIO_CLASS_BE

psutil.IOPRIO_CLASS_IDLE
A set of integers representing the I/O priority of a process on Linux. They can be used in conjunction
with psutil.Process.ionice() to get or set process I/O priority. IOPRIO_CLASS_NONE and IO-
PRIO_CLASS_BE (best effort) is the default for any process that hasn’t set a specific I/O priority. IO-
PRIO_CLASS_RT (real time) means the process is given first access to the disk, regardless of what else is
going on in the system. IOPRIO_CLASS_IDLE means the process will get I/O time when no-one else needs the
disk. For further information refer to manuals of ionice command line utility or ioprio_get system call.

Availability: Linux

psutil.IOPRIO_VERYLOW

psutil.IOPRIO_LOW

psutil.IOPRIO_NORMAL

psutil.IOPRIO_HIGH
A set of integers representing the I/O priority of a process on Windows. They can be used in conjunction with
psutil.Process.ionice() to get or set process I/O priority.

Availability: Windows

New in version 5.6.2.

8.4 Process resources constants

psutil.RLIM_INFINITY

psutil.RLIMIT_AS

psutil.RLIMIT_CORE

psutil.RLIMIT_CPU

psutil.RLIMIT_DATA

psutil.RLIMIT_FSIZE

psutil.RLIMIT_LOCKS

psutil.RLIMIT_MEMLOCK

psutil.RLIMIT_MSGQUEUE

psutil.RLIMIT_NICE

psutil.RLIMIT_NOFILE

psutil.RLIMIT_NPROC

psutil.RLIMIT_RSS

psutil.RLIMIT_RTPRIO

psutil.RLIMIT_RTTIME

psutil.RLIMIT_SIGPENDING

8.4. Process resources constants 45

http://linux.die.net/man/1/ionice
https://linux.die.net/man/2/ioprio_get

psutil Documentation, Release 5.6.7

psutil.RLIMIT_STACK
Constants used for getting and setting process resource limits to be used in conjunction with psutil.
Process.rlimit(). See man prlimit for further information.

Availability: Linux

8.5 Connections constants

psutil.CONN_ESTABLISHED

psutil.CONN_SYN_SENT

psutil.CONN_SYN_RECV

psutil.CONN_FIN_WAIT1

psutil.CONN_FIN_WAIT2

psutil.CONN_TIME_WAIT

psutil.CONN_CLOSE

psutil.CONN_CLOSE_WAIT

psutil.CONN_LAST_ACK

psutil.CONN_LISTEN

psutil.CONN_CLOSING

psutil.CONN_NONE

psutil.CONN_DELETE_TCB(Windows)

psutil.CONN_IDLE(Solaris)

psutil.CONN_BOUND(Solaris)
A set of strings representing the status of a TCP connection. Returned by psutil.Process.
connections() and psutil.net_connections() (status field).

8.6 Hardware constants

psutil.AF_LINK
Constant which identifies a MAC address associated with a network interface. To be used in conjunction with
psutil.net_if_addrs().

New in version 3.0.0.

psutil.NIC_DUPLEX_FULL

psutil.NIC_DUPLEX_HALF

psutil.NIC_DUPLEX_UNKNOWN
Constants which identifies whether a NIC (network interface card) has full or half mode speed.
NIC_DUPLEX_FULL means the NIC is able to send and receive data (files) simultaneously,
NIC_DUPLEX_FULL means the NIC can either send or receive data at a time. To be used in conjunction
with psutil.net_if_stats().

New in version 3.0.0.

psutil.POWER_TIME_UNKNOWN

46 Chapter 8. Constants

https://linux.die.net/man/2/prlimit

psutil Documentation, Release 5.6.7

psutil.POWER_TIME_UNLIMITED
Whether the remaining time of the battery cannot be determined or is unlimited. May be assigned to psutil.
sensors_battery()’s secsleft field.

New in version 5.1.0.

psutil.version_info
A tuple to check psutil installed version. Example:

>>> import psutil
>>> if psutil.version_info >= (4, 5):
... pass

8.6. Hardware constants 47

psutil Documentation, Release 5.6.7

48 Chapter 8. Constants

CHAPTER 9

Unicode

Starting from version 5.3.0 psutil adds unicode support, see issue #1040. The notes below apply to any API re-
turning a string such as Process.exe() or Process.cwd(), including non-filesystem related methods such as
Process.username() or WindowsService.description():

• all strings are encoded by using the OS filesystem encoding (sys.getfilesystemencoding()) which
varies depending on the platform (e.g. “UTF-8” on macOS, “mbcs” on Win)

• no API call is supposed to crash with UnicodeDecodeError

• instead, in case of badly encoded data returned by the OS, the following error handlers are used to replace the corrupted characters in the string:

– Python 3: sys.getfilesystemencodeerrors() (PY 3.6+) or "surrogatescape" on
POSIX and "replace" on Windows

– Python 2: "replace"

• on Python 2 all APIs return bytes (str type), never unicode

• on Python 2, you can go back to unicode by doing:

>>> unicode(p.exe(), sys.getdefaultencoding(), errors="replace")

Example which filters processes with a funky name working with both Python 2 and 3:

-*- coding: utf-8 -*-
import psutil, sys

PY3 = sys.version_info[0] == 2
LOOKFOR = u"ƒőő"
for proc in psutil.process_iter(attrs=['name']):

name = proc.info['name']
if not PY3:

name = unicode(name, sys.getdefaultencoding(), errors="replace")
if LOOKFOR == name:

print("process %s found" % p)

49

https://github.com/giampaolo/psutil/issues/1040

psutil Documentation, Release 5.6.7

50 Chapter 9. Unicode

CHAPTER 10

Recipes

10.1 Find process by name

Check string against Process.name():

import psutil

def find_procs_by_name(name):
"Return a list of processes matching 'name'."
ls = []
for p in psutil.process_iter(attrs=['name']):

if p.info['name'] == name:
ls.append(p)

return ls

A bit more advanced, check string against Process.name(), Process.exe() and Process.cmdline():

import os
import psutil

def find_procs_by_name(name):
"Return a list of processes matching 'name'."
ls = []
for p in psutil.process_iter(attrs=["name", "exe", "cmdline"]):

if name == p.info['name'] or \
p.info['exe'] and os.path.basename(p.info['exe']) == name or \
p.info['cmdline'] and p.info['cmdline'][0] == name:

ls.append(p)
return ls

51

psutil Documentation, Release 5.6.7

10.2 Kill process tree

import os
import signal
import psutil

def kill_proc_tree(pid, sig=signal.SIGTERM, include_parent=True,
timeout=None, on_terminate=None):

"""Kill a process tree (including grandchildren) with signal
"sig" and return a (gone, still_alive) tuple.
"on_terminate", if specified, is a callabck function which is
called as soon as a child terminates.
"""
assert pid != os.getpid(), "won't kill myself"
parent = psutil.Process(pid)
children = parent.children(recursive=True)
if include_parent:

children.append(parent)
for p in children:

p.send_signal(sig)
gone, alive = psutil.wait_procs(children, timeout=timeout,

callback=on_terminate)
return (gone, alive)

10.3 Terminate my children

This may be useful in unit tests whenever sub-processes are started. This will help ensure that no extra children
(zombies) stick around to hog resources.

import psutil

def reap_children(timeout=3):
"Tries hard to terminate and ultimately kill all the children of this process."
def on_terminate(proc):

print("process {} terminated with exit code {}".format(proc, proc.returncode))

procs = psutil.Process().children()
send SIGTERM
for p in procs:

try:
p.terminate()

except psutil.NoSuchProcess:
pass

gone, alive = psutil.wait_procs(procs, timeout=timeout, callback=on_terminate)
if alive:

send SIGKILL
for p in alive:

print("process {} survived SIGTERM; trying SIGKILL".format(p))
try:

p.kill()
except psutil.NoSuchProcess:

pass
gone, alive = psutil.wait_procs(alive, timeout=timeout, callback=on_terminate)
if alive:

(continues on next page)

52 Chapter 10. Recipes

psutil Documentation, Release 5.6.7

(continued from previous page)

give up
for p in alive:

print("process {} survived SIGKILL; giving up".format(p))

10.4 Filtering and sorting processes

This is a collection of one-liners showing how to use process_iter() in order to filter for processes and sort
them.

Setup:

>>> import psutil
>>> from pprint import pprint as pp

Processes having “python” in their name:

>>> pp([p.info for p in psutil.process_iter(attrs=['pid', 'name']) if 'python' in p.
→˓info['name']])
[{'name': 'python3', 'pid': 21947},
{'name': 'python', 'pid': 23835}]

Processes owned by user:

>>> import getpass
>>> pp([(p.pid, p.info['name']) for p in psutil.process_iter(attrs=['name', 'username
→˓']) if p.info['username'] == getpass.getuser()])
(16832, 'bash'),
(19772, 'ssh'),
(20492, 'python')]

Processes actively running:

>>> pp([(p.pid, p.info) for p in psutil.process_iter(attrs=['name', 'status']) if p.
→˓info['status'] == psutil.STATUS_RUNNING])
[(1150, {'name': 'Xorg', 'status': 'running'}),
(1776, {'name': 'unity-panel-service', 'status': 'running'}),
(20492, {'name': 'python', 'status': 'running'})]

Processes using log files:

>>> import os
>>> import psutil
>>> for p in psutil.process_iter(attrs=['name', 'open_files']):
... for file in p.info['open_files'] or []:
... if os.path.splitext(file.path)[1] == '.log':
... print("%-5s %-10s %s" % (p.pid, p.info['name'][:10], file.path))
...
1510 upstart /home/giampaolo/.cache/upstart/unity-settings-daemon.log
2174 nautilus /home/giampaolo/.local/share/gvfs-metadata/home-ce08efac.log
2650 chrome /home/giampaolo/.config/google-chrome/Default/data_reduction_proxy_
→˓leveldb/000003.log

Processes consuming more than 500M of memory:

10.4. Filtering and sorting processes 53

psutil Documentation, Release 5.6.7

>>> pp([(p.pid, p.info['name'], p.info['memory_info'].rss) for p in psutil.process_
→˓iter(attrs=['name', 'memory_info']) if p.info['memory_info'].rss > 500 * 1024 *
→˓1024])
[(2650, 'chrome', 532324352),
(3038, 'chrome', 1120088064),
(21915, 'sublime_text', 615407616)]

Top 3 most memory consuming processes:

>>> pp([(p.pid, p.info) for p in sorted(psutil.process_iter(attrs=['name', 'memory_
→˓percent']), key=lambda p: p.info['memory_percent'])][-3:])
[(21915, {'memory_percent': 3.6815453247662737, 'name': 'sublime_text'}),
(3038, {'memory_percent': 6.732935429979187, 'name': 'chrome'}),
(3249, {'memory_percent': 8.994554843376399, 'name': 'chrome'})]

Top 3 processes which consumed the most CPU time:

>>> pp([(p.pid, p.info['name'], sum(p.info['cpu_times'])) for p in sorted(psutil.
→˓process_iter(attrs=['name', 'cpu_times']), key=lambda p: sum(p.info['cpu_times
→˓'][:2]))][-3:])
[(2721, 'chrome', 10219.73),
(1150, 'Xorg', 11116.989999999998),
(2650, 'chrome', 18451.97)]

Top 3 processes which caused the most I/O:

>>> pp([(p.pid, p.info['name']) for p in sorted(psutil.process_iter(attrs=['name',
→˓'io_counters']), key=lambda p: p.info['io_counters'] and p.info['io_counters
→˓'][:2])][-3:])
[(21915, 'sublime_text'),
(1871, 'pulseaudio'),
(1510, 'upstart')]

Top 3 processes opening more file descriptors:

>>> pp([(p.pid, p.info) for p in sorted(psutil.process_iter(attrs=['name', 'num_fds
→˓']), key=lambda p: p.info['num_fds'])][-3:])
[(21915, {'name': 'sublime_text', 'num_fds': 105}),
(2721, {'name': 'chrome', 'num_fds': 185}),
(2650, {'name': 'chrome', 'num_fds': 354})]

10.5 Bytes conversion

import psutil

def bytes2human(n):
http://code.activestate.com/recipes/578019
>>> bytes2human(10000)
'9.8K'
>>> bytes2human(100001221)
'95.4M'
symbols = ('K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
prefix = {}
for i, s in enumerate(symbols):

(continues on next page)

54 Chapter 10. Recipes

psutil Documentation, Release 5.6.7

(continued from previous page)

prefix[s] = 1 << (i + 1) * 10
for s in reversed(symbols):

if n >= prefix[s]:
value = float(n) / prefix[s]
return '%.1f%s' % (value, s)

return "%sB" % n

total = psutil.disk_usage('/').total
print(total)
print(bytes2human(total))

. . . prints:

100399730688
93.5G

10.5. Bytes conversion 55

psutil Documentation, Release 5.6.7

56 Chapter 10. Recipes

CHAPTER 11

Supported platforms

These are the platforms I develop and test on:

• Linux Ubuntu 16.04

• MacOS 10.11 El Captain

• Windows 10

• Solaris 10

• FreeBSD 11

• OpenBSD 6.4

• NetBSD 8.0

• AIX 6.1 TL8 (maintainer Arnon Yaari)

Earlier versions are supposed to work but are not tested. For Linux, Windows and MacOS we have continuos inte-
gration. Other platforms are tested manually from time to time. Oldest supported Windows version is Windows XP,
which can be compiled from sources. Latest wheel supporting Windows XP is psutil 2.1.3. Supported Python versions
are 3.4+, 2.7 and 2.6.

57

https://github.com/wiggin15
https://pypi.org/project/psutil/2.1.3/#files

psutil Documentation, Release 5.6.7

58 Chapter 11. Supported platforms

CHAPTER 12

FAQs

• Q: Why do I get AccessDenied for certain processes?

• A: This may happen when you query processess owned by another user, especially on macOS (see issue #883)
and Windows. Unfortunately there’s not much you can do about this except running the Python process with
higher privileges. On Unix you may run the Python process as root or use the SUID bit (this is the trick used by
tools such as ps and netstat). On Windows you may run the Python process as NT AUTHORITY\SYSTEM
or install the Python script as a Windows service (this is the trick used by tools such as ProcessHacker).

59

https://github.com/giampaolo/psutil/issues/883

psutil Documentation, Release 5.6.7

60 Chapter 12. FAQs

CHAPTER 13

Running tests

There are two ways of running tests. If psutil is already installed use:

$ python -m psutil.tests

You can use this method as a quick way to make sure psutil fully works on your platform. If you have a copy of the
source code you can also use:

$ make test

61

psutil Documentation, Release 5.6.7

62 Chapter 13. Running tests

CHAPTER 14

Development guide

If you plan on hacking on psutil (e.g. want to add a new feature or fix a bug) take a look at the development guide.

63

https://github.com/giampaolo/psutil/blob/master/docs/DEVGUIDE.rst

psutil Documentation, Release 5.6.7

64 Chapter 14. Development guide

CHAPTER 15

Timeline

• 2019-11-26: 5.6.7 - what’s new - diff

• 2019-11-25: 5.6.6 - what’s new - diff

• 2019-11-06: 5.6.5 - what’s new - diff

• 2019-11-04: 5.6.4 - what’s new - diff

• 2019-06-11: 5.6.3 - what’s new - diff

• 2019-04-26: 5.6.2 - what’s new - diff

• 2019-03-11: 5.6.1 - what’s new - diff

• 2019-03-05: 5.6.0 - what’s new - diff

• 2019-02-15: 5.5.1 - what’s new - diff

• 2019-01-23: 5.5.0 - what’s new - diff

• 2018-10-30: 5.4.8 - what’s new - diff

• 2018-08-14: 5.4.7 - what’s new - diff

• 2018-06-07: 5.4.6 - what’s new - diff

• 2018-04-14: 5.4.5 - what’s new - diff

• 2018-04-13: 5.4.4 - what’s new - diff

• 2018-01-01: 5.4.3 - what’s new - diff

• 2017-12-07: 5.4.2 - what’s new - diff

• 2017-11-08: 5.4.1 - what’s new - diff

• 2017-10-12: 5.4.0 - what’s new - diff

• 2017-09-10: 5.3.1 - what’s new - diff

• 2017-09-01: 5.3.0 - what’s new - diff

• 2017-04-10: 5.2.2 - what’s new - diff

65

https://pypi.org/project/psutil/5.6.7/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#567
https://github.com/giampaolo/psutil/compare/release-5.6.6...release-5.6.7#files_bucket
https://pypi.org/project/psutil/5.6.6/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#566
https://github.com/giampaolo/psutil/compare/release-5.6.5...release-5.6.6#files_bucket
https://pypi.org/project/psutil/5.6.5/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#565
https://github.com/giampaolo/psutil/compare/release-5.6.4...release-5.6.5#files_bucket
https://pypi.org/project/psutil/5.6.4/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#564
https://github.com/giampaolo/psutil/compare/release-5.6.3...release-5.6.4#files_bucket
https://pypi.org/project/psutil/5.6.3/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#563
https://github.com/giampaolo/psutil/compare/release-5.6.2...release-5.6.3#files_bucket
https://pypi.org/project/psutil/5.6.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#562
https://github.com/giampaolo/psutil/compare/release-5.6.1...release-5.6.2#files_bucket
https://pypi.org/project/psutil/5.6.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#561
https://github.com/giampaolo/psutil/compare/release-5.6.0...release-5.6.1#files_bucket
https://pypi.org/project/psutil/5.6.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#560
https://github.com/giampaolo/psutil/compare/release-5.5.1...release-5.6.0#files_bucket
https://pypi.org/project/psutil/5.5.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#551
https://github.com/giampaolo/psutil/compare/release-5.5.0...release-5.5.1#files_bucket
https://pypi.org/project/psutil/5.5.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#550
https://github.com/giampaolo/psutil/compare/release-5.4.8...release-5.5.0#files_bucket
https://pypi.org/project/psutil/5.4.8/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#548
https://github.com/giampaolo/psutil/compare/release-5.4.7...release-5.4.8#files_bucket
https://pypi.org/project/psutil/5.4.7/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#547
https://github.com/giampaolo/psutil/compare/release-5.4.6...release-5.4.7#files_bucket
https://pypi.org/project/psutil/5.4.6/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#546
https://github.com/giampaolo/psutil/compare/release-5.4.5...release-5.4.6#files_bucket
https://pypi.org/project/psutil/5.4.5/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#545
https://github.com/giampaolo/psutil/compare/release-5.4.4...release-5.4.5#files_bucket
https://pypi.org/project/psutil/5.4.4/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#544
https://github.com/giampaolo/psutil/compare/release-5.4.3...release-5.4.4#files_bucket
https://pypi.org/project/psutil/5.4.3/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#543
https://github.com/giampaolo/psutil/compare/release-5.4.2...release-5.4.3#files_bucket
https://pypi.org/project/psutil/5.4.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#542
https://github.com/giampaolo/psutil/compare/release-5.4.1...release-5.4.2#files_bucket
https://pypi.org/project/psutil/5.4.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#541
https://github.com/giampaolo/psutil/compare/release-5.4.0...release-5.4.1#files_bucket
https://pypi.org/project/psutil/5.4.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#540
https://github.com/giampaolo/psutil/compare/release-5.3.1...release-5.4.0#files_bucket
https://pypi.org/project/psutil/5.3.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#530
https://github.com/giampaolo/psutil/compare/release-5.3.0...release-5.3.1#files_bucket
https://pypi.org/project/psutil/5.3.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#530
https://github.com/giampaolo/psutil/compare/release-5.2.2...release-5.3.0#files_bucket
https://pypi.org/project/psutil/5.2.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#522
https://github.com/giampaolo/psutil/compare/release-5.2.1...release-5.2.2#files_bucket

psutil Documentation, Release 5.6.7

• 2017-03-24: 5.2.1 - what’s new - diff

• 2017-03-05: 5.2.0 - what’s new - diff

• 2017-02-07: 5.1.3 - what’s new - diff

• 2017-02-03: 5.1.2 - what’s new - diff

• 2017-02-03: 5.1.1 - what’s new - diff

• 2017-02-01: 5.1.0 - what’s new - diff

• 2016-12-21: 5.0.1 - what’s new - diff

• 2016-11-06: 5.0.0 - what’s new - diff

• 2016-10-05: 4.4.2 - what’s new - diff

• 2016-10-25: 4.4.1 - what’s new - diff

• 2016-10-23: 4.4.0 - what’s new - diff

• 2016-09-01: 4.3.1 - what’s new - diff

• 2016-06-18: 4.3.0 - what’s new - diff

• 2016-05-14: 4.2.0 - what’s new - diff

• 2016-03-12: 4.1.0 - what’s new - diff

• 2016-02-17: 4.0.0 - what’s new - diff

• 2016-01-20: 3.4.2 - what’s new - diff

• 2016-01-15: 3.4.1 - what’s new - diff

• 2015-11-25: 3.3.0 - what’s new - diff

• 2015-10-04: 3.2.2 - what’s new - diff

• 2015-09-03: 3.2.1 - what’s new - diff

• 2015-09-02: 3.2.0 - what’s new - diff

• 2015-07-15: 3.1.1 - what’s new - diff

• 2015-07-15: 3.1.0 - what’s new - diff

• 2015-06-18: 3.0.1 - what’s new - diff

• 2015-06-13: 3.0.0 - what’s new - diff

• 2015-02-02: 2.2.1 - what’s new - diff

• 2015-01-06: 2.2.0 - what’s new - diff

• 2014-09-26: 2.1.3 - what’s new - diff

• 2014-09-21: 2.1.2 - what’s new - diff

• 2014-04-30: 2.1.1 - what’s new - diff

• 2014-04-08: 2.1.0 - what’s new - diff

• 2014-03-10: 2.0.0 - what’s new - diff

• 2013-11-25: 1.2.1 - what’s new - diff

• 2013-11-20: 1.2.0 - what’s new - diff

• 2013-10-22: 1.1.2 - what’s new - diff

66 Chapter 15. Timeline

https://pypi.org/project/psutil/5.2.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#521
https://github.com/giampaolo/psutil/compare/release-5.2.0...release-5.2.1#files_bucket
https://pypi.org/project/psutil/5.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#520
https://github.com/giampaolo/psutil/compare/release-5.1.3...release-5.2.0#files_bucket
https://pypi.org/project/psutil/5.1.3/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#513
https://github.com/giampaolo/psutil/compare/release-5.1.2...release-5.1.3#files_bucket
https://pypi.org/project/psutil/5.1.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#512
https://github.com/giampaolo/psutil/compare/release-5.1.1...release-5.1.2#files_bucket
https://pypi.org/project/psutil/5.1.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#511
https://github.com/giampaolo/psutil/compare/release-5.1.0...release-5.1.1#files_bucket
https://pypi.org/project/psutil/5.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#510
https://github.com/giampaolo/psutil/compare/release-5.0.1...release-5.1.0#files_bucket
https://pypi.org/project/psutil/5.0.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#501
https://github.com/giampaolo/psutil/compare/release-5.0.0...release-5.0.1#files_bucket
https://pypi.org/project/psutil/5.0.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#500
https://github.com/giampaolo/psutil/compare/release-4.4.2...release-5.0.0#files_bucket
https://pypi.org/project/psutil/4.4.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#442
https://github.com/giampaolo/psutil/compare/release-4.4.1...release-4.4.2#files_bucket
https://pypi.org/project/psutil/4.4.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#441
https://github.com/giampaolo/psutil/compare/release-4.4.0...release-4.4.1#files_bucket
https://pypi.org/project/psutil/4.4.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#440
https://github.com/giampaolo/psutil/compare/release-4.3.1...release-4.4.0#files_bucket
https://pypi.org/project/psutil/4.3.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#431
https://github.com/giampaolo/psutil/compare/release-4.3.0...release-4.3.1#files_bucket
https://pypi.org/project/psutil/4.3.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#430
https://github.com/giampaolo/psutil/compare/release-4.2.0...release-4.3.0#files_bucket
https://pypi.org/project/psutil/4.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#420
https://github.com/giampaolo/psutil/compare/release-4.1.0...release-4.2.0#files_bucket
https://pypi.org/project/psutil/4.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#410
https://github.com/giampaolo/psutil/compare/release-4.0.0...release-4.1.0#files_bucket
https://pypi.org/project/psutil/4.0.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#400
https://github.com/giampaolo/psutil/compare/release-3.4.2...release-4.0.0#files_bucket
https://pypi.org/project/psutil/3.4.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#342
https://github.com/giampaolo/psutil/compare/release-3.4.1...release-3.4.2#files_bucket
https://pypi.org/project/psutil/3.4.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#341
https://github.com/giampaolo/psutil/compare/release-3.3.0...release-3.4.1#files_bucket
https://pypi.org/project/psutil/3.3.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#330
https://github.com/giampaolo/psutil/compare/release-3.2.2...release-3.3.0#files_bucket
https://pypi.org/project/psutil/3.2.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#322
https://github.com/giampaolo/psutil/compare/release-3.2.1...release-3.2.2#files_bucket
https://pypi.org/project/psutil/3.2.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#321
https://github.com/giampaolo/psutil/compare/release-3.2.0...release-3.2.1#files_bucket
https://pypi.org/project/psutil/3.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#320
https://github.com/giampaolo/psutil/compare/release-3.1.1...release-3.2.0#files_bucket
https://pypi.org/project/psutil/3.1.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#311
https://github.com/giampaolo/psutil/compare/release-3.1.0...release-3.1.1#files_bucket
https://pypi.org/project/psutil/3.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#310
https://github.com/giampaolo/psutil/compare/release-3.0.1...release-3.1.0#files_bucket
https://pypi.org/project/psutil/3.0.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#301
https://github.com/giampaolo/psutil/compare/release-3.0.0...release-3.0.1#files_bucket
https://pypi.org/project/psutil/3.0.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#300
https://github.com/giampaolo/psutil/compare/release-2.2.1...release-3.0.0#files_bucket
https://pypi.org/project/psutil/2.2.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#221
https://github.com/giampaolo/psutil/compare/release-2.2.0...release-2.2.1#files_bucket
https://pypi.org/project/psutil/2.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#220
https://github.com/giampaolo/psutil/compare/release-2.1.3...release-2.2.0#files_bucket
https://pypi.org/project/psutil/2.1.3/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#213
https://github.com/giampaolo/psutil/compare/release-2.1.2...release-2.1.3#files_bucket
https://pypi.org/project/psutil/2.1.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#212
https://github.com/giampaolo/psutil/compare/release-2.1.1...release-2.1.2#files_bucket
https://pypi.org/project/psutil/2.1.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#211
https://github.com/giampaolo/psutil/compare/release-2.1.0...release-2.1.1#files_bucket
https://pypi.org/project/psutil/2.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#210
https://github.com/giampaolo/psutil/compare/release-2.0.0...release-2.1.0#files_bucket
https://pypi.org/project/psutil/2.0.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#200
https://github.com/giampaolo/psutil/compare/release-1.2.1...release-2.0.0#files_bucket
https://pypi.org/project/psutil/1.2.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#121
https://github.com/giampaolo/psutil/compare/release-1.2.0...release-1.2.1#files_bucket
https://pypi.org/project/psutil/1.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#120
https://github.com/giampaolo/psutil/compare/release-1.1.2...release-1.2.0#files_bucket
https://pypi.org/project/psutil/1.1.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#112
https://github.com/giampaolo/psutil/compare/release-1.1.1...release-1.1.2#files_bucket

psutil Documentation, Release 5.6.7

• 2013-10-08: 1.1.1 - what’s new - diff

• 2013-09-28: 1.1.0 - what’s new - diff

• 2013-07-12: 1.0.1 - what’s new - diff

• 2013-07-10: 1.0.0 - what’s new - diff

• 2013-05-03: 0.7.1 - what’s new - diff

• 2013-04-12: 0.7.0 - what’s new - diff

• 2012-08-16: 0.6.1 - what’s new - diff

• 2012-08-13: 0.6.0 - what’s new - diff

• 2012-06-29: 0.5.1 - what’s new - diff

• 2012-06-27: 0.5.0 - what’s new - diff

• 2011-12-14: 0.4.1 - what’s new - diff

• 2011-10-29: 0.4.0 - what’s new - diff

• 2011-07-08: 0.3.0 - what’s new - diff

• 2011-03-20: 0.2.1 - what’s new - diff

• 2010-11-13: 0.2.0 - what’s new - diff

• 2010-03-02: 0.1.3 - what’s new - diff

• 2009-05-06: 0.1.2 - what’s new - diff

• 2009-03-06: 0.1.1 - what’s new - diff

• 2009-01-27: 0.1.0 - what’s new - diff

67

https://pypi.org/project/psutil/1.1.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#111
https://github.com/giampaolo/psutil/compare/release-1.1.0...release-1.1.1#files_bucket
https://pypi.org/project/psutil/1.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#110
https://github.com/giampaolo/psutil/compare/release-1.0.1...release-1.1.0#files_bucket
https://pypi.org/project/psutil/1.0.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#101
https://github.com/giampaolo/psutil/compare/release-1.0.0...release-1.0.1#files_bucket
https://pypi.org/project/psutil/1.0.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#100
https://github.com/giampaolo/psutil/compare/release-0.7.1...release-1.0.0#files_bucket
https://pypi.org/project/psutil/0.7.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#071
https://github.com/giampaolo/psutil/compare/release-0.7.0...release-0.7.1#files_bucket
https://pypi.org/project/psutil/0.7.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#070
https://github.com/giampaolo/psutil/compare/release-0.6.1...release-0.7.0#files_bucket
https://pypi.org/project/psutil/0.6.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#061
https://github.com/giampaolo/psutil/compare/release-0.6.0...release-0.6.1#files_bucket
https://pypi.org/project/psutil/0.6.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#060
https://github.com/giampaolo/psutil/compare/release-0.5.1...release-0.6.0#files_bucket
https://pypi.org/project/psutil/0.5.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#051
https://github.com/giampaolo/psutil/compare/release-0.5.0...release-0.5.1#files_bucket
https://pypi.org/project/psutil/0.5.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#050
https://github.com/giampaolo/psutil/compare/release-0.4.1...release-0.5.0#files_bucket
https://pypi.org/project/psutil/0.4.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#041
https://github.com/giampaolo/psutil/compare/release-0.4.0...release-0.4.1#files_bucket
https://pypi.org/project/psutil/0.4.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#040
https://github.com/giampaolo/psutil/compare/release-0.3.0...release-0.4.0#files_bucket
https://pypi.org/project/psutil/0.3.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#030
https://github.com/giampaolo/psutil/compare/release-0.2.1...release-0.3.0#files_bucket
https://pypi.org/project/psutil/0.2.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#021
https://github.com/giampaolo/psutil/compare/release-0.2.0...release-0.2.1#files_bucket
https://pypi.org/project/psutil/0.2.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#020
https://github.com/giampaolo/psutil/compare/release-0.1.3...release-0.2.0#files_bucket
https://pypi.org/project/psutil/0.1.3/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#013
https://github.com/giampaolo/psutil/compare/release-0.1.2...release-0.1.3#files_bucket
https://pypi.org/project/psutil/0.1.2/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#012
https://github.com/giampaolo/psutil/compare/release-0.1.1...release-0.1.2#files_bucket
https://pypi.org/project/psutil/0.1.1/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#011
https://github.com/giampaolo/psutil/compare/release-0.1.0...release-0.1.1#files_bucket
https://pypi.org/project/psutil/0.1.0/#files
https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#010
https://github.com/giampaolo/psutil/compare/d84cc9a783d977368a64016cdb3568d2c9bceacc...release-0.1.0#files_bucket

psutil Documentation, Release 5.6.7

68 Chapter 15. Timeline

Python Module Index

p
psutil, 1

69

psutil Documentation, Release 5.6.7

70 Python Module Index

Index

A
ABOVE_NORMAL_PRIORITY_CLASS (in module psu-

til), 44
AccessDenied (class in psutil), 25
AF_LINK (in module psutil), 46
AIX (in module psutil), 43
as_dict() (psutil.Process method), 29
as_dict() (psutil.WindowsService method), 42

B
BELOW_NORMAL_PRIORITY_CLASS (in module psu-

til), 44
binpath() (psutil.WindowsService method), 41
boot_time() (in module psutil), 20
BSD (in module psutil), 43

C
children() (psutil.Process method), 36
cmdline() (psutil.Process method), 27
CONN_BOUND (in module psutil), 46
CONN_CLOSE (in module psutil), 46
CONN_CLOSE_WAIT (in module psutil), 46
CONN_CLOSING (in module psutil), 46
CONN_DELETE_TCB (in module psutil), 46
CONN_ESTABLISHED (in module psutil), 46
CONN_FIN_WAIT1 (in module psutil), 46
CONN_FIN_WAIT2 (in module psutil), 46
CONN_IDLE (in module psutil), 46
CONN_LAST_ACK (in module psutil), 46
CONN_LISTEN (in module psutil), 46
CONN_NONE (in module psutil), 46
CONN_SYN_RECV (in module psutil), 46
CONN_SYN_SENT (in module psutil), 46
CONN_TIME_WAIT (in module psutil), 46
connections() (psutil.Process method), 37
cpu_affinity() (psutil.Process method), 33
cpu_count() (in module psutil), 10
cpu_freq() (in module psutil), 11
cpu_num() (psutil.Process method), 34

cpu_percent() (in module psutil), 10
cpu_percent() (psutil.Process method), 33
cpu_stats() (in module psutil), 11
cpu_times() (in module psutil), 9
cpu_times() (psutil.Process method), 32
cpu_times_percent() (in module psutil), 10
create_time() (psutil.Process method), 28
cwd() (psutil.Process method), 29

D
description() (psutil.WindowsService method), 42
disk_io_counters() (in module psutil), 14
disk_partitions() (in module psutil), 13
disk_usage() (in module psutil), 14
display_name() (psutil.WindowsService method), 41

E
environ() (psutil.Process method), 27
Error (class in psutil), 25
exe() (psutil.Process method), 27

F
FREEBSD (in module psutil), 43

G
getloadavg() (in module psutil), 11
gids() (psutil.Process method), 30

H
HIGH_PRIORITY_CLASS (in module psutil), 44

I
IDLE_PRIORITY_CLASS (in module psutil), 44
io_counters() (psutil.Process method), 31
ionice() (psutil.Process method), 30
IOPRIO_CLASS_BE (in module psutil), 45
IOPRIO_CLASS_IDLE (in module psutil), 45
IOPRIO_CLASS_NONE (in module psutil), 45
IOPRIO_CLASS_RT (in module psutil), 45

71

psutil Documentation, Release 5.6.7

IOPRIO_HIGH (in module psutil), 45
IOPRIO_LOW (in module psutil), 45
IOPRIO_NORMAL (in module psutil), 45
IOPRIO_VERYLOW (in module psutil), 45
is_running() (psutil.Process method), 39

K
kill() (psutil.Process method), 39

L
LINUX (in module psutil), 43

M
MACOS (in module psutil), 43
memory_full_info() (psutil.Process method), 35
memory_info() (psutil.Process method), 34
memory_info_ex() (psutil.Process method), 35
memory_maps() (psutil.Process method), 36
memory_percent() (psutil.Process method), 36

N
name() (psutil.Process method), 27
name() (psutil.WindowsService method), 41
net_connections() (in module psutil), 16
net_if_addrs() (in module psutil), 17
net_if_stats() (in module psutil), 18
net_io_counters() (in module psutil), 15
NETBSD (in module psutil), 43
NIC_DUPLEX_FULL (in module psutil), 46
NIC_DUPLEX_HALF (in module psutil), 46
NIC_DUPLEX_UNKNOWN (in module psutil), 46
nice() (psutil.Process method), 30
NORMAL_PRIORITY_CLASS (in module psutil), 44
NoSuchProcess (class in psutil), 25
num_ctx_switches() (psutil.Process method), 32
num_fds() (psutil.Process method), 32
num_handles() (psutil.Process method), 32
num_threads() (psutil.Process method), 32

O
oneshot() (psutil.Process method), 26
open_files() (psutil.Process method), 37
OPENBSD (in module psutil), 43
OSX (in module psutil), 43

P
parent() (psutil.Process method), 29
parents() (psutil.Process method), 29
pid (psutil.Process attribute), 27
pid() (psutil.WindowsService method), 41
pid_exists() (in module psutil), 24
pids() (in module psutil), 23
Popen (class in psutil), 40

POSIX (in module psutil), 43
POWER_TIME_UNKNOWN (in module psutil), 46
POWER_TIME_UNLIMITED (in module psutil), 46
ppid() (psutil.Process method), 27
Process (class in psutil), 25
process_iter() (in module psutil), 23
PROCFS_PATH (in module psutil), 43
psutil (module), 1

R
REALTIME_PRIORITY_CLASS (in module psutil), 44
resume() (psutil.Process method), 39
RLIM_INFINITY (in module psutil), 45
rlimit() (psutil.Process method), 31
RLIMIT_AS (in module psutil), 45
RLIMIT_CORE (in module psutil), 45
RLIMIT_CPU (in module psutil), 45
RLIMIT_DATA (in module psutil), 45
RLIMIT_FSIZE (in module psutil), 45
RLIMIT_LOCKS (in module psutil), 45
RLIMIT_MEMLOCK (in module psutil), 45
RLIMIT_MSGQUEUE (in module psutil), 45
RLIMIT_NICE (in module psutil), 45
RLIMIT_NOFILE (in module psutil), 45
RLIMIT_NPROC (in module psutil), 45
RLIMIT_RSS (in module psutil), 45
RLIMIT_RTPRIO (in module psutil), 45
RLIMIT_RTTIME (in module psutil), 45
RLIMIT_SIGPENDING (in module psutil), 45
RLIMIT_STACK (in module psutil), 45

S
send_signal() (psutil.Process method), 39
sensors_battery() (in module psutil), 19
sensors_fans() (in module psutil), 19
sensors_temperatures() (in module psutil), 19
start_type() (psutil.WindowsService method), 41
status() (psutil.Process method), 29
status() (psutil.WindowsService method), 41
STATUS_DEAD (in module psutil), 44
STATUS_DISK_SLEEP (in module psutil), 44
STATUS_IDLE (in module psutil), 44
STATUS_LOCKED (in module psutil), 44
STATUS_PARKED (in module psutil), 44
STATUS_RUNNING (in module psutil), 44
STATUS_SLEEPING (in module psutil), 44
STATUS_STOPPED (in module psutil), 44
STATUS_SUSPENDED (in module psutil), 44
STATUS_TRACING_STOP (in module psutil), 44
STATUS_WAITING (in module psutil), 44
STATUS_WAKE_KILL (in module psutil), 44
STATUS_WAKING (in module psutil), 44
STATUS_ZOMBIE (in module psutil), 44
SUNOS (in module psutil), 43

72 Index

psutil Documentation, Release 5.6.7

suspend() (psutil.Process method), 39
swap_memory() (in module psutil), 13

T
terminal() (psutil.Process method), 30
terminate() (psutil.Process method), 39
threads() (psutil.Process method), 32
TimeoutExpired (class in psutil), 25

U
uids() (psutil.Process method), 29
username() (psutil.Process method), 29
username() (psutil.WindowsService method), 41
users() (in module psutil), 20

V
version_info (in module psutil), 47
virtual_memory() (in module psutil), 12

W
wait() (psutil.Process method), 39
wait_procs() (in module psutil), 24
win_service_get() (in module psutil), 41
win_service_iter() (in module psutil), 41
WINDOWS (in module psutil), 43
WindowsService (class in psutil), 41

Z
ZombieProcess (class in psutil), 25

Index 73

	Quick links
	About
	Professional support
	Install
	System related functions
	CPU
	Memory
	Disks
	Network
	Sensors
	Other system info

	Processes
	Functions
	Exceptions
	Process class
	Popen class

	Windows services
	Constants
	Operating system constants
	Process status constants
	Process priority constants
	Process resources constants
	Connections constants
	Hardware constants

	Unicode
	Recipes
	Find process by name
	Kill process tree
	Terminate my children
	Filtering and sorting processes
	Bytes conversion

	Supported platforms
	FAQs
	Running tests
	Development guide
	Timeline
	Python Module Index
	Index

